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Appendix A. Theory

A.1 Land use choice model

A.1.1 Specification of payoffs and idiosyncratic shocks

In each county i there is a continuum of fields, each indexed by ω. Each field ω is owned by a
landowner, who chooses a land use from a discrete choice set consisting of a natural-use option N
and a nest of agricultural commodities C. We denote rc

i (ω) as the landowner’s return to commod-
ity c, measured in dollars per unit of land, and Lc

i (ω) as the field’s size (i.e., hectares). Returns are
decomposed into the average return of county i, rc

i , and a field ω idiosyncratic shock εc
i (ω),

rc
i (ω) = rc

i exp(εc
i (ω)).

Let AN
i (ω) denote the payoff per unit of land when left in its natural state, which is decomposed

into a county i average AN
i and a field ω-specific idiosyncratic shock εNi (ω). Finally, let rk

i (ω)
denote the landowner’s return per physical unit of land allocated to choice k,

rk
i (ω) =

{
rc

i exp(εc
i (ω)) if k = c ∈ C,

AN
i exp(εNi (ω)) if k = N ,

Since returns rk
i (ω) are linear in land it is optimal to allocate the entire field to a single use (this

is why the choice problem is discrete). Next, as in any discrete choice problem, the probability
of making a specific choice k is invariant to monotonic transformations of payoffs. Therefore,
consider the log returns, denoted r̃k

i (ω),

r̃k
i (ω) =

{
ln
(
rc

i
)
+ εc

i (ω) if k = c ∈ C,
ln
(

AN
i
)
+ εNi (ω) if k = N .

By having the field ω-idiosyncratic component of payoffs in additive form we can now use stan-
dard discrete choice results from industrial organization, which typically use additive type I EV
errors instead of multiplicative type II EV (Fréchet) errors. Each εk

i (ω) is distributed type I ex-
treme value with a dispersion parameter σ that determines the variance of the shocks across
fields: the standard deviation of εk

i (ω) is σ π√
6
. Because the scale of the payoffs is irrelevant for

the landowner’s discrete decision, we can re-scale them by any positive factor. Let θ denote the
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re-scaling factor, so that the re-scaled payoffs are r̃k
i (ω)∗ ≡ θr̃k

i (ω),

r̃k
i (ω)∗ =

{
θ ln

(
rc

i Ac
i
)
+ εc

i (ω)∗ if k = c ∈ C,
θ ln

(
AN

i
)
+ εNi (ω)∗ if k = N .

I follow the convention to set the re-scaling factor equal to the inverse of the type I EV dispersion
parameter, i.e., θ = σ−1 (Train, 2009), which normalizes the standard deviation of the re-scaled
error εk

i (ω)∗ ≡ θεk
i (ω) to π√

6
. For this reason, the parameter θ governs the dispersion of the id-

iosyncratic shocks across fields (with higher values of θ corresponding to lower dispersion). Next,
we turn to the assumptions that generate correlation between the εk

i (ω)∗’s, which in the model is
governed by the parameter λ.

A.1.2 Nested logit distributional assumptions

The results in this section are based on Chapter 4 of Train (2009), where the textbook nested logit
model is introduced. Our goal is to incorporate flexibility in substitution patterns within a nest
relative to across nests, while maintaining tractability. We do so with a nested logit model, which
amounts to assuming the idiosyncratic shocks from the prior section {ε1

i (ω)∗, . . . , εCi (ω)∗, εNi (ω)∗}
are distributed Generalized Extreme Value (GEV) with the following cdf,

exp

−
N

∑
n=1

[
∑

k∈Bn

exp

(
−

εk
i (ω)∗

λn

)]λn
 , (1)

where N is the number of nests, Bn is the name of n-th nest, k is an option inside a nest, and
λn ∈ (0, 1) is a parameter governing the degree of correlation within each nest. Lower values of
λn indicate higher correlation, hence setting λn = 1 ∀n makes the εk

i (ω)’s independent and turns
the nested logit model into a multinomial logit model. Note the marginal distribution of each
εk

i (ω)∗ in 1 is type I EV with standard deviation π√
6

because of how we re-scaled payoffs in the
preceding section. In our specific application we have N=2 and {B1, B2} = {C,N}. We also set
λN = 1 because nest N has a single option, rendering the correlation parameter meaningless, and
we also drop the subscript for λC since we only need to estimate a single correlation parameter.
Following Train (2009), under the GEV distributional assumption, the probability commodity c is
chosen, conditional on the farmer choosing the agricultural nest C, is,

π
c|C
i =

(
rc

i
) θ

λ

∑c′∈C
(
rc′

i

) θ
λ

, (CCP)

and the choice probabilities of the two nests are,

πC
i =

(
PC

i
)λ

PN
i +

(
PC

i

)λ
and πN

i =
PN

i

PN
i +

(
PC

i

)λ
. (NCP)

where we have defined PC
i ≡ ∑c′∈C

(
rc′

i

) θ
λ

as the payoff of the agricultural nest, and PN
i ≡

(
AN

i
)θ

as the payoff of the natural use nest. Technically, ln PC
i and ln PN

i are the inclusive values of each
nest in the nested logit model. While θ governs the dispersion of shocks across fields (because it
is technically the inverse of the parameter that drives the variance of the shocks), λ governs how
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correlated the shocks are across commodities within the agricultural nest. Our GEV distributional
assumption implies the shocks are more correlated among agricultural commodities than between
any given agricultural commodity and the natural use option. This delivers the following cross-
price elasticities of land shares,

d ln πk
i

d ln pc′
i
=

d ln πk
i

d ln rc′
i

∂ ln rc′
i

∂ ln pc′
i
=


[
−θπc′

i + θ (λ−1)
λ π

c′|C
i

]
1

γc′
L

for k = c ̸= c′ ∈ C

−θπc′
i

1
γc′

L
for k = N .

The above implies substitution patterns are stronger within-nest than across nest, since
∣∣∣∣ d ln πc

i

d ln pc′
i

∣∣∣∣ >∣∣∣∣ d ln πN
i

d ln pc′
i

∣∣∣∣ for c ̸= c′. Notice the proportional substitution property holds within-nest C but not

across nests: d ln π
c|C
i

d ln pc′
i

= − θ
λ π

c′|C
i

1
γc′

L
∀c.

A.1.3 Interpretation of within- and across-nest elasticities of substitution

First, consider the odds ratio between two commodities within the agricultural nest,

ln

(
π

c|C
i

π
c′|C
i

)
= ln

(
πc

i

πc′
i

)
=

θ

λ
ln

(
rc

i

rc′
i

)
. (2)

From the above, the parameter ratio θ
λ is the elasticity of substitution between commodities: it

tells us how the relative land share between two commodities changes when their relative returns
change. The reason we do not interpret θ

λ as a deforestation elasticity is because changes in the
land shares πc

i and πc′
i do not necessarily imply deforestation: these shares could be rising by

stealing land shares from other commodities than from natural land. Intuitively, the substitution
elasticity θ

λ is large when dispersion of shocks across fields goes to zero (θ → ∞) because marginal
fields in a county become identical to the infra-marginal fields, and as a result, the supply curve
becomes flat. This elasticity can also be large when the shocks are perfectly correlated across
commodities (λ → 0). With perfect correlation, the idiosyncratic shocks move in tandem across
different commodities—the variance of their differences falls, implying county heterogeneity falls.

Second, consider the odds ratio between the two nests,

ln

(
πC

i

πN
i

)
= λ ln

(
PC

i

(AN
i )

θ
λ

)
where PC

i = ∑
c∈C

(rc
i )

θ
λ , (3)

where PC
i is interpreted as the payoff to nest C. The reason for defining the nest’s payoff in this way

is because the conventional definition for a nest’s payoff in a nested logit model is the inclusive

value term (Train, 2009), which in our setting takes the form of ln
(

∑c∈C
(
rc

i
) θ

λ

)
, i.e., ln PC

i . From
the above, λ indicates how agricultural land expands relative to natural land when the payoff of
agriculture relative to nature increases. For this reason, λ is interpreted as a deforestation elasticity.
Technically, λ is the elasticity of substitution across nests, i.e., between nature and agriculture.
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A.1.4 Analytical expression of carbon tax impact

The impact of a local carbon tax on commodity c for overall land use is obtained by deriving the
elasticity of the nest C share with respect to an individual commodity c price, since a carbon tax
would be an unit-specific tax, which is akin to a price change,

d ln LC
i

d ln pc
i
=

d ln πC
i

d ln pc
i
=

d ln πC
i

d ln rc
i

∂ ln rc
i

∂ ln pc
i
= θπ

c|C
i (1 − πC

i )
1

γc
L

.

We need to put a negative sign in front of the expression above in order to obtain the impact of a
tax (a price decrease for the producer). The drop in agricultural land is stronger when i) θ is high,
ii) the share of the individual commodity within nest C is especially high, and iii) the land-intensity
of commodity c is small (because production depends on the homogenous non-land factors).

A.2 County-level aggregation

A.2.1 Within-nest expected returns

Only fields with high draws of rc
i (ω) are chosen by landowners to produce c. In what follows,

it is useful to define the realized payoff in field ω as the maximum payoff among all possible
commodity choices within nest C,

Ri(ω) ≡ max
c′∈C

rc′
i (ω).

Ri(ω) is a random variable, and its expected value is the expected payoff from choosing nest C.
This object has a closed form: it is the inclusive value of the nest multiplied by the nest’s correlation
parameter λ (Train (2009), Chapter 4). To obtain the payoff in dollar units one must then divide
by the coefficient on price (in our case, θ). Applying the appropriate transformation from the type
I EV to the type II EV setting gives us,

E
[
Ri(ω)

]
=

[
∑

c′∈C
(rc′

i )
θ
λ

] λ
θ

.

Next, consider the expected payoff from commodity c, conditional on it being chosen (i.e., on
being the highest payoff commodity), and let fRi

(r) denote the probability density of Ri(ω),∫
r

E
[
rc

i (ω)
∣∣∣rc

i (ω) = r
]

fRi
(r) =

∫
r

r fRi
(r) = E

[
Ri(ω)

]
,

=

[
∑

c′∈C
(rc′

i )
θ
λ

] λ
θ

=
rc

i
rc

i

[
∑

c′∈C
(rc′

i )
θ
λ

] λ
θ

,

= rc
i

[
∑c′∈C(rc′

i )
θ
λ

(rc
i )

θ
λ

] λ
θ

= rc
i

(
π

c|C
i

)− λ
θ
> rc

i = E [rc
i (ω)] .

The last line above is the selection effect: the average return of fields allocated to produce com-
modity c is higher than the unconditional mean return in c. As π

c|C
i grows the average return

falls because the fields that are less productive in commodity c begin to be drawn into production.
Also, as dispersion across fields goes to zero (θ → ∞), all fields become identical and the selection
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effect disappears: the conditional expected return converges to the unconditional one.

A.2.2 Across-nest expected productivity

The relevant expectation over productivity needs to take into account the payoff from the natural
option as well, which the previous section ignores. Therefore, we now consider the maximum
payoff across all nests,

Ri(ω) ≡ max
{1, ... c , ... , C , N}

[
r1

it(ω) , . . . , rC
it(ω) , AN

it (ω)
]

.

Farrokhi and Pellegrina (2023) show how to derive the expected productivity of a nested discrete
choice problem with the same structure as mine: an upper nest where farmers choose crops, and
a lower nest where they choose a technology type conditional on the crop choice. They have a
GEV distribution for the idiosyncratic shocks with two parameters: θ1 controls the dispersion of
land productivity across crops, and θ2 controls the dispersion of productivity across technologies
within a crop. The ratio θ2/θ1 governs the correlation of the shocks across technologies within
a crop (i.e., the correlation within the lower nest). My model directly maps to their framework
by specifying their upper nest as my model’s choice between N and C, and their lower nest as
my model’s choice of commodity within nest C (if nest N is chosen there is no second choice
since there is only one choice in nest N ). Their GEV parameters can be mapped to mine as θ2 =
θ/λ and θ1 = θ. Hence, θ

λ governs the dispersion of shocks across commodities within nest C,
while θ governs the dispersion of shocks across nests. This parameter mapping also implies that
my correlation parameter λ equals the ratio of their two dispersion parameters, i.e., λ = θ1/θ2.
Hence, as θ1 falls relative to θ2, and thus λ falls, correlation of productivity draws in the lower
nest increases (in my case, the lower nest is nest C, while in their case it is the stage of technology
choices within a crop). Thus, by adjusting the notation from Farrokhi and Pellegrina (2023) to
my framework, the expected productivity of commodity c, conditional on it being chosen (i.e., on
being the highest payoff across all nests) is,

E
[
rc

i (ω)
∣∣∣rc

i (ω) = Ri(ω)
]
= rc

i

(
π

c|C
i

)− λ
θ
(

πC
i

)− 1
θ

> rc
i

(
π

c|C
i

)− λ
θ
= E

[
rc

i (ω)
∣∣∣rc

i (ω) = Ri(ω)
]

> rc
i = E [rc

i (ω)] .

In the second to last line, notice the expected productivity is now decreasing in both the within-
nest share of commodity c and the nest C share. As more fields are allocated to commodity c
specifically and nest C broadly, these fields are the ones with both i) lower yields, and ii) lower
commodity-relative-to-nature payoff. This expectation is higher than the within-nest C expecta-
tion because we are now taking into account a second source of selection in the upper nest.

A.2.3 County-level quantities

To obtain quantities at the county level we directly follow the approach in Farrokhi and Pellegrina
(2023). First, note the land share of revenue is equal to the land rents,

γc
L pc

itQ
c
it(ω) = rc

it(ω) =⇒ Qc
it(ω) =

rc
it(ω)

pc
itγ

c
L

.
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Therefore, the county-level expected output is given by,

E
[

Qc
it(ω)

∣∣∣rc
it(ω) = Rit(ω)

]
=

1
pc

itγ
c
L
× E

[
rc

it(ω)
∣∣∣rc

it(ω) = Rit(ω)
]

=
rc

it
pc

itγ
c
L

(
π

c|C
it

)− λ
θ
(

πC
it

)− 1
θ

.

The above is the expected output on an infinitesimally small field ω. To obtain county-level output
we scale up by the amount of land allocated to commodity c,

Qc
it = E

[
Qc

it(ω)
∣∣∣rc

it(ω) = Rit(ω)
]
× πc

it L̄i

=
rc

it
pc

itγ
c
L

(
π

c|C
it

)− λ
θ
(

πC
it

)− 1
θ × πc

it L̄i

=
rc

it
pc

itγ
c
L

(
π

c|C
it

)1− λ
θ
(

πC
it

)1− 1
θ L̄i.

A.3 Consumer CES demand problem

A destination j consumer maximizes her utility Ujt by choosing Ck
ijt: how much to consume of

product k from county i given prices pk
ijt and a total budget of Xjt. Here, Xjt is the destination j

income spent on agricultural goods, which I assume is exogenous since this is a single-industry
model. Formally, the consumer j problem is,

max
Cc

ijt

Ujt s.t. ∑
c

∑
i

pc
ijtC

c
ijt ≤ Xjt, where Ujt ≡

(
∑

k
(ak

jt)
1

ηu (Ck
jt)

ηu−1
ηu

) ηu
ηu−1

,

where Ck
jt =

(
∑n(ak

njt)
1

ηm (Ck
njt)

ηm−1
ηm

) ηm
ηm−1

is consumption of good k aggregated across source na-

tions indexed n and Ck
njt =

(
∑i′∈n(ak

i′ jt)
1
ηl (Ck

i′ jt)
ηl−1

ηl

) ηl
ηl−1

is consumption of good k aggregated

across source counties indexed i′ belonging to nation n. The ηl , ηm, and ηu terms are the lower,
middle, and upper level elasticities of substitution and the a terms are preference shifters at each
level. Moreover, it will be useful to define price indices at each level of the demand system as

Pk
njt ≡

(
∑i′∈n ak

i′ jt(pk
i′ jt)

1−ηl

) 1
1−ηl , Pk

jt ≡
(

∑n ak
njt(Pk

njt)
1−ηm

) 1
1−ηm and Pjt ≡

(
∑c ak

jt(Pk
jt)

1−ηu

) 1
1−ηu .

Lower level. Combining the first order conditions of the consumer problem for two origin-
specific products Ck

ijt and Ck
i′ jt with i, i′ ∈ n, and then summing for all i′ ∈ n we obtain,

Ck
ijt = ak

ijt

(
pk

ijt

Pk
njt

)−ηl Xk
njt

Pk
njt

, (4)
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where Xk
njt ≡ ∑i′∈n pk

i′ jtC
k
i′ jt is total expenditure on product k from nation n. To obtain the lower

level estimating equation, multiply both sides of 4 by pk
ijt, bring the Xk

njt term to the LHS, take logs,

ln

(
Xk

ijt

Xk
njt

)
= (1 − ηl) ln

(
pk

ijt

)
− ln

(
∑
i′∈n

ak
i′ jt(pk

i′ jt)
1−ηl

)
+ ln

(
ak

ijt

)
∀i ∈ n. (5)

Middle level. Plug in 4 into the consumer’s FOC for Ck
ijt, evaluate it for n and n′, and then sum

across all n′. This delivers the following expression,

Xk
njt

Xk
jt

=
ak

njt

(
Pk

njt

)1−ηm

∑n′ ak
n′ jt

(
Pk

n′ jt

)1−ηm

Taking logs of the above delivers our estimating equation for the middle level,

ln

(
Xk

njt

Xk
jt

)
= (1 − ηm) ln

(
Pk

njt

)
− ln

(
∑
n′

ak
n′ jt(Pk

n′ jt)
1−ηm

)
+ ln

(
ak

njt

)
. (6)

Upper level. Plug in 4 and Ck
njt, into the consumer’s FOC for Ck

ijt, evaluate it for k and k′, and
sum across all k′. This delivers the following expression,

Xk
jt

Xjt
=

ak
jt

(
Pk

jt

)1−ηu

∑k′ ak′
jt

(
Pk′

jt

)1−ηu
.

Taking logs of the above delivers our estimating equation for the upper level,

ln

(
Xk

jt

Xjt

)
= (1 − ηu) ln

(
Pk

jt

)
− ln

(
∑
k′

ak′
jt

(
Pk′

jt

)1−ηu

)
+ ln

(
ak

jt

)
. (7)

A.3.1 Price-index level expression for demand

Notice we can write Cc
ijt from 4 in terms of price indices at each level and the total expenditure Xjt,

Ck
ijt = ak

ijt

(
pk

ijt

Pk
njt

)−ηl

ak
njt

(
Pk

njt

Pk
jt

)−ηm

ak
jt

(
Pk

jt

Pjt

)−ηu
Xjt

Pjt
∀i ∈ n, (8)

which is the expression in the main text.

A.4 Extension with firm heterogeneity and entry/exit

Entry with homogenous firms. Consider an extension of the intermediary model that allows for
entry, but maintains the firm homogeneity assumption. We assume that in each market i there is
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a fixed entry cost ϕc
i . Potential entrants enter until the incumbent profits equal the entry cost,

p̄k
it f (qc

it; k)− p̄k
it f ′(qc

it; k)µc
it(q

c
it, Nc

it)︸ ︷︷ ︸
=pc

it

qc
it = ϕc

i .

To simplify, the expression above, consider the case of linear technology f (qc
it; k) = αcqc

it,

p̄k
itαcqc

it [1 − µc
it(q

c
it, Nc

it)] = ϕc
i .

The key empirical challenge is obtaining estimates of the entry cost ϕc
i . One approach is to use the

number of firms at one point in time to back out values for ϕc
i , and in counterfactuals assume ϕc

i is
fixed. However, these assumptions are quite strong and not too different from directly fixing the
number of firms, since ϕc

i is backed out from that number at some point in time and kept fixed.
It is not obvious this approach is more credible than the baseline assumption of a fixed number
of firms, especially since there isn’t much observed entry/exit in the data to begin with. For this
reason, I use the baseline model from the main text, which is upfront about the difficulty of deal-
ing with entry. Apart from introducing empirical issues, it seems unlikely that adding exit/entry
would change the paper’s qualitative insights in terms of the transmission of environmental pol-
icy. Recall that the qualitative insights from introducing market power in the baseline model
rely solely on incomplete pass-through. To the extent that adding exit/entry continues to deliver
incomplete pass-through, the qualitative results of the paper would therefore remain the same.
Given our main goal is not to measure the welfare impact of market power per se, but simply how
it interferes with the transmission of environmental policy, allowing for exit/entry is unlikely to
be crucial for the paper’s qualitative results.

No entry, but heterogeneous firms. With heterogeneous firms, we would have to introduce an
additional elasticity of substitution across firms in the farmers’ choice problem. To credibly es-
timate this elasticity, we would need plausibly exogenous demand shifters at the firm level as
instruments, which are hard to come by. As already mentioned, it is important to stress that the
qualitative insights from introducing market power in the baseline model rely solely on incom-
plete pass-through. To the extent that adding firm heterogeneity continues to deliver incomplete
pass-through, the qualitative results of the paper would remain the same. Thus, given our main
goal is not to measure the welfare impact of market power per se, but simply how it interferes
with the transmission of environmental policy, allowing for firm heterogeneity is unlikely to be
crucial for the paper’s qualitative results.

Entry with heterogeneous firms. If one combines firm heterogeneity with entry then we can
have selection of highly productive firms into the market, and thus obtain the typical extensive-
margin efficiency gains emphasized by the long-standing firm heterogeneity literature. In general,
more productive firms can be more environmentally friendly if they use resources more efficiently.
While including these ingredients would allow us to have productivity effects on agribusiness
firms, it would seem unlikely this is first order for environmental outcomes in our agricultural
setting since it is the farmers, not the agribusiness firms, who ultimately make the environmentally
relevant decisions. For other industries though, such as manufacturing, the extensive-margin
efficiency gains could have important environmental consequences if the more productive firms
use fossil fuels more efficiently, for example. In any case, and as mentioned in the prior paragraph,
to the extent that adding firm heterogeneity and exit continues to deliver incomplete pass-through,
the qualitative results of the paper are likely to remain the same.
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A.5 Decentralizing the first-best allocation

Let variables corresponding to the first-best allocations be denoted by superscript ∗. For the equi-
librium outcomes in the imperfectly competitive case we remove superscript ∗. First, we set the
forest subsidy at the same Pigouvian rate as in the first best sNi = sN∗

i , so that landowners fully
internalize the land use change component of emissions.

Second, we need farmers to internalize that commodities vary in their non-LUC emissions.
Hence, we want to choose a commodity-specific output tax tc

i that decentralizes the first-best.
That is, we need farmers to receive the same after-tax price as in the first-best so that they choose
Lc

i = Lc∗
i . The following condition guarantees this,

pc
i − tc

i = pc∗
i − tc∗

i , (9)

where pc
i is the pre-tax equilibrium farm-gate price in the imperfectly competitive world. We also

need consumers to demand the same amount as in the first-best, otherwise we don’t have an
equilibrium. The following condition guarantees this,

pk
ij = pk∗

ij =⇒
pc

i
µc

i

τij

mck
i

= pc∗
i

τij

mck
i

=⇒ pc
i = pc∗

i µc
i (Lc∗

i ). (10)

In the last equality, notice that given Lc∗
i we can compute µc

i since it is only a function of land
shares. Therefore, once we have pc∗

i and Lc∗
i , we can pin down the equilibrium farm-gate (pre-tax)

price pc
i in the imperfectly competitive world that would deliver the same first-best allocation.

Finally, we can plug condition 10 in 9 to pin down the required output tax for the farmers to
produce the same as in the first-best,

tc
i = tc∗

i − pc∗
i [1 − µc

i (Lc∗
i )︸ ︷︷ ︸

<1

].

Notice that tc
i < tc∗

i : imperfect competition is already bringing quantities part of the way down
to the first-best, so the required output tax is less than in the perfectly competitive case. Also, it
could even be that tc

i is negative, so that we would need to subsidize output. This would only
occur if the environmental externality is small relative to the market power distortion, so that the
imperfectly competitive equilibrium delivers quantities that are below the social optimum even
after considering environmental costs.

Appendix B. Data

B.1 Cattle productivity

FAO-GAEZ reports yields in units of tonnes/ha for crops, but reports a pasture productivity index
rather than a physical yield for cattle. Hence, we need to transform the index into cattle “yields
per ha”. Let xi denote the FAO-GAEZ pasture productivity index in location i. Let hi denote the
location’s stocking rate (number of cattle head per ha, obtained from agricultural censuses). Let
ĥ(xi) denote an estimate of the stocking rate that can be sustained in a location with pasture index
xi. I obtain this estimate by projecting xi onto hi, with results shown in Table 1.
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Table 1: Correlation between stocking rates and pasture productivity index.

Dependent variable: Cattle head/ha

(1) (2) (3) (4)

intercept 0.570*** 0.660*** 0.656*** 0.599***
(0.049) (0.062) (0.085) (0.082)

pasture yield (index) 0.766*** 0.888*** 0.809*** 0.885***
(0.067) (0.064) (0.062) (0.061)

maize yield (t/ha) -0.033*** -0.044***
(0.009) (0.011)

soybean yield (t/ha) -0.051* 0.055
(0.028) (0.033)

Num.Obs. 5,265 5,265 5,265 5,265
R2 0.150 0.168 0.154 0.170

Notes: All specifications are weighted by pasture area (ha). HC-robust SE in parenthesis.

When constructing the hi variable I restrict the sample to calf data, since the goal is to mea-
sure spatial variation in pasture’s stocking potential for breeding, and not to pick up variation
in intermediate stages such as backgrounding or finishing. That is, we want to link ĥ(xi) to the
productivity of breeders (that rely almost exclusively on pasture) and not the finishing establish-
ments (that rely more on feed and other intermediate inputs). Finally, I use data on calf weights
wi (tonnes/head) from CEPEA to go from head/ha to tonnes/ha. The end result is a measure of
the observable component of cattle productivity (in tonnes/ha), constructed as zb

i = ĥ(xi)wi.

B.2 Domestic trade data

To map domestic trade flows I use supply chain data from TRASE. This data links production in
domestic counties to exporting firms, logistics hubs/ports, and importing firms in foreign mar-
kets, for the major agricultural commodities of Argentina and Brazil (beef, soybeans, maize). For
Brazil, soybean is available for 2004-2020, beef is available for 2010-2020, maize is available for
2015-2017. For Argentina, data is available for soybean, from 2015-2019. While we are miss-
ing agribusiness data for commodities such as wheat or rice, the three commodities we do have
agribusiness data for account for roughly 85% of all agricultural land in both countries (with pas-
ture land alone accounting for 70%).

Methodology. In order to construct the supply chain data, TRASE uses an enhanced form of
material flow analysis: the “Spatially Explicit Information on Production to Consumption Sys-
tems” methodology (SEI-PCS), described in Godar, Persson, Tizado and Meyfroidt (2015). The
primary inputs for the SEI-PCS methodology are customs documents (e.g., customs declarations,
bills of lading) that declare the volume and FOB value of a commodity shipment, the identity of
the exporting agribusiness firm, the port of export, the identity of the importing firm, and the
destination country. The way that SEI-PCS links the shipments from the port of export back to the
source county is by combining the customs documents with the agribusiness firm’s domestic asset
and tax information (e.g, information of slaughterhouses or soybean crushing facilities owned by
the exporting firm). Further details on the methodology can be found at trase.earth/methodology.
To the best of my knowledge, this is the most comprehensive source of domestic supply chain data
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available, despite not being perfect. An example of recent published work using the data is Rajão,
Soares-Filho, Nunes, Börner, Machado, Assis, Oliveira, Pinto, Ribeiro, Rausch et al. (2020).

Key variables. Trade flows between source county and destination country are reported in “raw
commodity-equivalent” quantities (weight) and value (port-of-export FOB). The quantities are re-
ported in this “commodity-equivalent” way because the commodities are not always exported in
the same format. For example, in the case of beef the data specifies whether the exports are “raw”
live animals, de-boned frozen beef, offals, etc. In the case of maize or soybeans, the data specifies
whether the exports are in raw grain form or partially processed into meal. Reported quantities
therefore reflect the equivalent raw-commodity weight attributable to the exported format, based
on a linear conversion factor. Finally, the data also specifies the location of the logistics hub (e.g.,
ports and inland consignment centers) through which the commodity is shipped.

Validation to conventional agricultural trade datasets. To get a sense of the quality and rep-
resentativeness of the TRASE data, I compare it to conventional aggregated data sources, such
as FAOSTAT. Figure 1 shows how the national-level exports from Argentina and Brazil implied
by the dis-aggregated TRASE data line up with FAOSTAT. The left panel of the figure shows
how exports correlate across data sources (i.e., each point is a producing nation-commodity-year
observation). The right panel shows how bilateral export pairs between each producing nation
(Argentina or Brazil) and destination correlate across data sources (i.e., each point is a producing
nation-destination-commodity-year observation). For both total export levels as well as the bilat-
eral pairs, TRASE aggregates are highly correlated with FAOSTAT, with an R-squared above 99%
and a slope of best fit near 1.

Figure 1: Validation of TRASE micro-data with FAOSTAT aggregate data.
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data sources (i.e., each point is a producing nation-commodity-year observation). The right panel shows how bilateral
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data sources (ie., each point is a producing nation-destination nation-commodity-year observation).
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B.2.1 Persistence analysis

Persistence of agribusiness firm presence over time. The presence and market share of an indi-
vidual firm in an upstream market is persistent during the sample period. To show this pattern I
estimate the following AR(1) regression,

yc
f it = ρyc

f it−1 + εc
f it,

where yc
f it is either i) the market share in commodity c of firm f in county i at time t, or ii) a dummy

variable indicating whether firm f is actively sourcing commodity c from county i at time t. The
results for both outcomes are displayed in Tables 2-3, respectively, and suggest high persistence in
specific upstream markets, regardless of how granular the upstream markets are defined.

Table 2: Persistence of a firm’s market share in an upstream market.

AR(1) AR(1) AR(1) AR(1)

ρ 0.533*** 0.618*** 0.659*** 0.695***
(0.004) (0.008) (0.013) (0.031)

Upstream market definition AMC/County Mesoregion Microregion State/Province
Observations 33,790,006 5,523,836 1,690,518 379,080
R2 0.283 0.383 0.432 0.488

Notes: results are from an AR(1) model, yc
f it = ρyc

f it−1 + εc
f it, where yc

f it is the market share in commodity c of firm
f in upstream market i at time t. The data covers Argentina and Brazil, and all agribusiness firms operating in beef,
soybean, and maize markets. Each column defines upstream markets at different levels of spatial aggregation. HC-
robust SE in parenthesis.

Table 3: Persistence of a firm’s presence in an upstream market.

(1) (2) (3) (4)

ρ 0.660*** 0.660*** 0.666*** 0.681***
(0.002) (0.003) (0.004) (0.008)

Upstream market definition AMC/County Mesoregion Microregion State/Province
Observations 33,790,006 5,523,836 1,690,518 379,080
R2 0.400 0.398 0.413 0.417

Notes: results are from an AR(1) model, yc
f it = ρyc

f it−1 + εc
f it, where yc

f it is a dummy indicator that takes a value of
1 if firm f is sourcing commodity c from upstream market i at time t. The data covers Argentina and Brazil, and all
agribusiness firms operating in beef, soybean, and maize markets. Each column defines upstream markets at different
levels of spatial aggregation. HC-robust SE in parenthesis.

Persistence of an upstream location’s exposure to foreign consumer markets. We can repeat
the same analysis of persistence, but for foreign consumer markets instead of agribusiness firms.
To show these patterns I estimate the following AR(1) regression,

yc
jit = ρyc

jit−1 + εc
jit,
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Table 4: Persistence of a destination’s market share in an upstream market.

(1) (2) (3) (4)

ρ 0.648*** 0.763*** 0.824*** 0.811***
(0.004) (0.007) (0.010) (0.031)

Upstream market definition AMC/County Mesoregion Microregion State/Province
Observations 373,674 64,568 22,890 4,060
R2 0.407 0.570 0.674 0.641

Notes: results are from an AR(1) model, yc
jit = ρyc

jit−1 + εc
jit, where yc

jit is the market share in commodity c of destination
j in upstream market i at time t. The data covers Argentina and Brazil, and beef, soybean, and maize markets. Each
column defines upstream markets at different levels of spatial aggregation. HC-robust SE in parenthesis.

Table 5: Persistence of a destination’s presence in an upstream market.

(1) (2) (3) (4)

ρ 0.689*** 0.694*** 0.678*** 0.743***
(0.002) (0.005) (0.008) (0.018)

Upstream market definition AMC/County Mesoregion Microregion State/Province
Observations 373,674 64,568 22,890 4,060
R2 0.472 0.480 0.459 0.553

Notes: results are from an AR(1) model, yc
jit = ρyc

jit−1 + εc
jit, where yc

jit is a dummy indicator that takes a value of 1
if destination j is sourcing commodity c from upstream market i at time t. The data covers Argentina and Brazil, and
beef, soybean, and maize markets. Each column defines upstream markets at different levels of spatial aggregation.
HC-robust SE in parenthesis.

where yc
jit is either i) the market share in commodity c of destination j in county i at time t, or ii) a

dummy variable indicating whether destination j is actively sourcing commodity c from county i
at time t. The results for both outcomes are displayed in Tables 4-5, indicating high persistence in
specific upstream markets, regardless of how granular the upstream markets are defined.

Appendix C. Estimation

C.1 Role of the nesting structure

Estimating a non-nested multinomial model amounts to imposing λ = 1 and estimating a single
parameter θ from variation between commodities and natural use simultaneously. The multino-
mial model mixes variation within and across nests to deliver a single elasticity: the land-use
change elasticity and the substitution elasticity between commodities are one and the same,

d ln πc
it

d ln pc
it
= θ(1 − πc

it)/γc
L.
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The nested model’s objective is to allow changes in a commodity’s acreage to be decomposed into
both margins:

d ln πc
it

d ln pc
it

=
d ln π

c|C
it

d ln pc
it︸ ︷︷ ︸

commodity substitution: θ
λ (1−π

c|C
it )/γc

L

+
d ln πC

it
d ln pc

it︸ ︷︷ ︸
land conversion: θ

λ π
c|C
it ×λ(1−πC

it)/γc
L

.

The first term is identical to the land-use change elasticity implied by Ricardian agricultural trade
models and indicates how crop c acreage increases by stealing land shares from other crops. The
second term tells us how crop c land use increases by stealing land shares from natural land. Total
agricultural land responds to overall agricultural returns, measured as PC

it , as follows:

d ln πC
it

d ln PC
it
= λ(1 − πC

it),

By separating the two margins, the nested model adds flexibility so that substitution elastici-
ties across commodities are estimated from variation within the agricultural nest while land-use
change elasticities are estimated from variation across nests.

C.2 Construction of inclusive value for across-nest estimation

To estimate the across-nest equation 8 of the main text we need to construct the inclusive value

term ln PC
it , where PC

it ≡ ∑c∈C
(
rc

it
) θ

λ . Hence, we need to know the rc
it terms, which consist of

observables (agronomic yields zc
it, farm-gate prices pc

it, and factor shares γc
L) as well unobservables,

rc
it = zc

it (pc
it)

1
γc

L ζ̃c
it where ζ̃c

it ≡ (wHit)
− γc

H
γc

L (wMit)
− γc

M
γc

L ζc
it. (11)

Above, I’ve labeled ζ̃c
it as the unobservable part of rc

it: it is a combination of the unobservable
land productivity shocks ζc

it and unobserved non-land input prices (wMit, wHit). For estimation
purposes we don’t need to separate ζc

it from ζ̃c
it, but for the model simulations that come later

we will (this is explained later on in Appendix D.1, where I describe how I simulate the model).
Below, I outline the steps to estimate the across-nest equation 8 of the main text. One of these
steps involves using data on observed yields to calibrate the unobserved ζ̃c

it terms that enter the
inclusive value.

1. Estimate the within-nest substitution elasticities θ
λ from equation 7 of the main text.

2. Given an estimate of θ
λ , back out relative values of ζ̃c

it from equation 7 of the main text,

ln

(
ζ̃c

it

ζ̃c′
it

)
=

λ

θ
ln

(
πc

it

πc′
it

)
− ln

 (pc
it
) 1

γc
L zc

it(
pc′

it

) 1
γc′

L zc′
it

 (12)

3. To construct the inclusive value terms we need to pin down the level of ζ̃c
it ∀c. Notice it

suffices to pin down the level of ζ̃c
it for one commodity, because we can then use the relative

values from 12 to obtain the rest. Hence, for that one commodity c, we can use the model’s
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implied yields to backout the value of ζ̃c
it that would rationalize an observed yield of Qc

it
Lc

it
,

Qc
it

Lc
it
=

(
pc

it
) 1

γc
L
−1

γc
L

zc
it ζ̃

c
it

(
π

c|C
it

)− λ
θ
(

πC
it

)− 1
θ
=⇒ ζ̃c

it =
γc

L(
pc

it

) 1
γc

L
−1

Qc
it

Lc
it

1
zc

it

(
π

c|C
it

) λ
θ
(

πC
it

) 1
θ

.

Thus, we have expressed ζ̃c
it as a function of observables: Qc

it
Lc

it
are the observed yields we want

the model to match, π
c|C
it and πC

it are observed land shares, λ
θ is known from the within-nest

estimation step, and zc
it is the agronomic FAO-GAEZ data.1

C.3 Markdown analysis

C.3.1 Robustness of model-implied markdowns to definition of upstream market

Recall the model-implied markdown is given by µc
i ≡

(
1 + ∂ ln pc

i
∂ ln Qc

i

1
Nc

i

)−1
< 1. Markdowns are a

function of the number of firms Nc
i and the supply elasticity ∂ ln pc

i
∂ ln Qc

i
. The price-elasticity of sup-

ply is ∂ ln Qc
it

∂ ln pc
it
=
[(

θ
λ − 1

) (
1 − π

c|C
it

)
+ (θ − 1)πc|C

it

(
1 − πC

it
)] 1

γc
L
+
(

1
γc

L
− 1
)

: a function of land use
substitution parameters (θ, λ), factor intensities (γc

L), and land use shares (πc
it). Notice that the

larger we define the upstream market, the more agribusiness firms Nc
i will be operating there,

and markdowns µc
i will converge up towards 1. At the same time, as we change the upstream

market definition, the supply elasticity also changes because the land use shares change. In my
baseline estimation exercise I use Brazilian AMCs as my upstream market definition, since using
the smallest spatial unit possible is useful for estimation precision.

Figure 2 compares the values of Nc
i and µc

i under my baseline to that implied by two alter-
native upstream market definitions: microregions and mesoregions. The two top panels show
markdowns are indeed closer to 1 the larger we define the upstream market: the intercept in the
scatter plots are shifted up. However, the spatial distribution of markdowns remains fairly stable,
as reflected by the high R2: the locations with the largest markdowns are the same regardless of
how the upstream market is defined, even though the average level of markdowns is scaled up.
Recall the qualitative mechanisms of the paper depend on the spatial correlation of markdowns
rather than their average level—it is the fact that markdowns are wider in emissions-intense re-
gions that delivers the paper’s qualitative results.

The two bottom panels of Figure 2 show the number of firms operating in an upstream market
is mechanically larger as we increase the size of the upstream market—the intercept in the scatter
plots are shifted up. Less mechanically, notice the slope of line of best fit is greater than 1: as
we increase the size of the spatial unit, it is the competitive locations (according to the baseline
AMC definition) that disproportionately increase the number of firms. By making the competitive
regions even more competitive as we increase the size of the spatial unit, the qualitative policy re-
sults are actually exacerbated because the correlation between market power and high emissions
intensity becomes stronger. Finally, Figure 3 shows that emissions intensities are negatively corre-
lated with model-implied markdowns—the places where farm-gate prices are marked down most
are the emissions-intense ones—and this holds across definitions of upstream market.

1Notice we also need to know θ. Hence, we make a guess for λ, which restricts θ through our estimate of θ
λ from

step 1. This allows us to pin down ζ̃c
it and estimate 8 of the main text, from which we obtain an estimate for λ. We

therefore iterate until our guess of λ converges to the estimated λ.
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Figure 2: Comparison of number of firms and markdowns across upstream market definitions.

y = 0.162 + 0.86 x

R2 = 0.84

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0

AMC market definition

m
ic

ro
re

gi
on

 m
ar

ke
t d

ef
in

iti
on

Markdown µ

y = 0.237 + 0.791 x

R2 = 0.81

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0

AMC market definition

m
es

or
eg

io
n 

m
ar

ke
t d

ef
in

iti
on

Markdown µ

y = 1.19 + 1.34 x

R2 = 0.81

0

10

20

30

40

0 10 20 30

AMC market definition

m
ic

ro
re

gi
on

 m
ar

ke
t d

ef
in

iti
on

Number of firms

y = 2.8 + 1.56 x

R2 = 0.58

0

10

20

30

0 5 10 15 20

AMC market definition

m
es

or
eg

io
n 

m
ar

ke
t d

ef
in

iti
on

Number of firms

Notes: Values are pooled across all commodities for which agribusiness data is available (beef, maize, soybean). To
compare AMC-level variables to larger spatial units, the AMC-level variables are averaged up to the larger unit.
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Figure 3: Correlation of markdowns with emissions intensity across upstream market definitions.
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Notes: all scatter plots are constructed from upstream market-level observations on markdowns, market access, and
carbon intensity. Black curves are fitted second-order polynomials of the upstream market-level observations, while
red markers display the binned scatter plot of such observations. The horizontal axis is the carbon intensity of the
upstream market, measured as average tonnes of carbon per hectare.
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C.3.2 Correlation of markdowns with remoteness and emissions intensity

Figure 4 shows the spatial correlation between markdowns, remoteness, and emissions intensities
for various commodities.

Figure 4: Correlation of model-implied markdowns with county-level observables.

A. Correlation with remoteness (measured as market access).
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B. Correlation with upstream emissions intensity (measured as carbon stock/hectare).

−0.5

−0.4

−0.3

−0.2

−0.1

3 4 5 6

log(tC/ha)

lo
g
(m

a
rk

d
o
w

n
 µ

)

Upstream beef markets

−0.10

−0.08

−0.06

3 4 5 6

log(tC/ha)

lo
g
(m

a
rk

d
o
w

n
 µ

)

Upstream soybean markets

−0.100

−0.075

−0.050

−0.025

3 4 5 6

log(tC/ha)

lo
g
(m

a
rk

d
o
w

n
 µ

)

Upstream maize markets

Notes: scatter plots are constructed from county-level observations on markdowns, market access, and carbon intensity.
Black curves are fitted polynomials of county-level observations. Red markers are binned scatter plots. Markdowns
are computed using 4. Market access is constructed as weighted-average distance from logistics hubs: ∑j sjd−1

ij where
dij is county i-hub j distance and weights sj reflect hub trade volume. Carbon intensity of each county is measured as
average tonnes of carbon/ha.

C.3.3 Validation of model-implied markdowns to external measures of markdowns

I construct external accounting-based markdowns for the subset of commodities for which we
have the data to do so (soybean, beef, maize) and compare them to model-implied markdowns.
First, note the external and model-implied markdowns are not directly comparable because they
are theoretically different objects. The external markdown is computed on an accounting basis as
the ratio between the upstream farm-gate price the agribusiness firm pays and the downstream
price it receives at the logistics hub (ports, as well as inland consignment centers). The gap be-
tween these two prices is driven by (i) agribusiness market power, but also by (ii) transport costs
from the farm to the logistics hub, and (iii) any value-added the agribusiness contributes along the
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supply chain. By contrast, the model-implied markdown µc
i is a measure of pure agribusiness mar-

ket power that has already netted-out transport costs and value-added. Hence, we need to control
for domestic transport costs and value-added to isolate the variation in external markdowns that
is driven by buyer market power, and then compare that variation to that of the model-implied
markdown. To control for transport costs I use distance between upstream location and logistics
hub, which is reported in the TRASE data. To control for value-added I exploit another useful
feature of the data: the format in which the commodity is exported is reported. Thus, I can control
for differential value-added across commodity-processed good pairs (e.g., raw soybeans-soybean
oil versus raw soybeans-soybean meal) with flexible fixed effects.

Table 6 shows a positive and statistically significant relationship between external markdowns
and model-implied ones, even when controlling for domestic transport costs and agribusiness
value-added. Hence, the model-implied markdowns are largest in the same locations where the
market power component of the external markdowns is largest. If we are willing to assume that
external markdowns are to some degree indicative of market power, then the fact that the model-
implied markdowns move in the same direction across space is reassuring. Having said this,
accounting-based markdowns are not perfect measures of market power, so even if my model is
correctly specified, we should not expect the model-implied markdowns to perfectly align with
accounting-based ones. The main objective of this exercise is simply to verify that the model-
implied markdowns at least go in the same direction across space as the external ones.

Table 6: External markdowns vs. model-implied markdowns.

Dep. var.: log (external markdown)

(1) (2) (3)

log (model-implied markdown) 0.195*** 0.171*** 0.143***
(0.019) (0.020) (0.022)

log (distance to hub) -0.014*** -0.012*** -0.003*
(0.002) (0.002) (0.002)

Commodity fixed effects ✓
Commodity-by-product fixed effects ✓
Observations 28,810 28,810 28,810

Notes: the dependent variable is the external (accounting-based) markdown, defined as the ratio of the upstream farm
gate price to the average downstream price. The independent variable is the model-implied markdown µc

i . “Distance
to logistics hub” is an upstream location’s average distance to its surrounding hubs. The set of commodities used for
this exercise are: beef, maize, soybeans. SE clustered at the county-level.

C.4 Trade costs

In perfectly competitive settings, the gap between the downstream destination j price for a com-
modity sourced from upstream source i (pc

ijt) and the upstream price (pc
it) pins down bilateral trade

costs τij through the model’s equilibrium conditions,

log(pc
ijt)− log(pc

it) = log(τij). (13)

Hence, one could estimate the relationship between unobserved trade costs τij and a measure of
observed distance dij by regressing the observed price gaps on the left hand side of 13 on distance.
However, if intermediaries hold market power, price gaps are also driven by the wedge created by

19



markdowns µc
it. Furthermore, if intermediaries are transforming the commodity c into a processed

good k instead of trading it raw, the price gap also reflects the marginal product of the commodity
to the processed good, f ′(qc

it; k). In these more general cases, equation 13 becomes,

log(pk
ijt)− log(pc

it) = log(τij)− log(µc
it)− log(mck

it ), (14)

where we have defined mck
it ≡ f ′(qc

it; k) as the marginal product of commodity input c for pro-
cessed good k. Hence, mck

it measures how efficient firms are at obtaining physical units of pro-
cessed good k from a physical unit of raw commodity c, and how this varies across upstream
locations. Without further assumptions, trade costs τij, markdowns µc

it, and marginal product mck
it

cannot be separately identified from data on price gaps alone. The conduct assumption is there-
fore an identifying restriction: it pins down µc

it as a function of supply elasticities and the number
of firms, allowing us to isolate one component of the price gap. This leaves us with two remaining
components that need to be disentangled: marginal product and trade costs.

To pin down marginal product I exploit the fact that the agribusiness data reports the format
in which a commodity sourced from county i is sold to destination j—namely whether it is sold
in raw form (e.g., raw soybeans, live cattle) or processed form (e.g., soybean oil, boneless beef).
First, by evaluating 14 only on price gaps of raw commodities (i.e., k = c) we can impose mcc

it = 1
because there is no processing taking place, and therefore trade costs are identified. Second, for
price gaps involving a processed format of the commodity we can estimate mck

it by exploiting price
variation across different processed goods k and k′ within a raw commodity-origin-destination c-
i-j tuple. Intuitively, the difference in the downstream price of soybean oil versus soybean meal
along the same origin-destination route ij differences out trade costs and raw commodity-c mark-
downs, thus isolating the marginal product component. Further implementation details on how I
control for marginal product when measuring trade costs are in the next section C.4.1.

C.4.1 Controlling for value-added to measure trade costs

This section provides details on how I parameterize the trade costs and marginal product values
that are required for model simulations. Starting from equation 14 we can derive the following,

log(pk
ijt)− log(pc

it) + log(µc
it) = χ log(dij)︸ ︷︷ ︸

log(τij)

+ FEickt.︸ ︷︷ ︸
− log(mck

it )

(15)

The left hand side is observed since we have data on price ratios pk
ijt/pc

it and estimates for mark-
downs µc

it from the supply estimation exercise. On the right hand side of 15 we have i) unobserved
trade costs τij, which we parameterize as a function of observed distance dij with elasticity χ, and
ii) unobserved marginal product, which we can control for non-parametrically with a fixed effect
FEickt due to the richness of the agribusiness data.2 From 15 we obtain an estimate for the distance

2Downstream prices are defined by upstream origin i, downstream destination j, and for each product k processed
from a given commodity c. Consider the downstream price ratio between two goods k and k′ produced from the same
commodity c (e.g., k = soybean oil and k′ = soybean meal produced from c = raw soybeans) and along the same origin-
destination route ij, as in equation 16. The ratio of downstream prices identifies the ratio of marginal products because
the origin-destination ij and commodity c terms cancel out. Since marginal product levels are identified for k = c
(because mcc

it = 1), we can then use 16 to back out marginal product levels for k ̸= c.

pk
ijt

pk′
ijt

=
mck

it
mck′

it
. (16)
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elasticity χ̂, which we use to project trade costs as log(τ̂ij) = χ̂ log(dij) in model simulations. Then
going back to 15 we use the projected trade costs to back out marginal product residually,

log(m̂ck
it ) = log(τ̂ij)−

[
log(pk

ijt)− log(pc
it) + log(µc

it)
]

.

In the model simulations we don’t model individual finished products, but we do take into ac-
count overall value-added by using the average marginal product of commodity c across all its
final products k = 1, 2, . . . , K, defined as mc

it = ∑k m̂ck
it /K. The main role this plays is to allow for

differences in agribusiness productivity by location.

Appendix D. Simulations

D.1 Model parametrization details

Unobserved land productivity ζc
it. In section C.2 we had defined an unobservable term ζ̃c

it ≡

(wHit)
− γc

H
γc

L (wMit)
− γc

M
γc

L ζc
it, which consisted of unobserved land productivity (ζc

it) and unobserved
factor prices (wHit, wMit). Moreover, when estimating supply we calibrated ζ̃c

it such that model-
implied yields matched those observed in the data. We did not disentangle ζc

it from the non-land
input prices (wHit, wMit) because it was not necessary for estimation. However, this decomposition
is necessary for model simulations because the non-land input prices will be endogenously deter-
mined in equilibrium. Therefore, we incorporate the information on observed yields embedded
in ζ̃c

it by choosing ζc
it such that, given the simulation guess for wMit and wHit, the model implied

ζ̃c
it matches the one backed out from our estimation. The procedure is as follows,

• Given our calibrated ζ̃c
it terms and guesses for wMit, wHit, we can back out the unobservable

productivity terms as ζc
it = ζ̃c

it (wHit)
γc

H
γc

L (wMit)
γc

M
γc

L . Hence, we are backing out the ζc
it terms

such that their interaction with our guesses for factor prices delivers the ζ̃c
it term from our

estimation exercise.

• Notice rc
it =

(
pc

it
) 1

γc
L zc

it ζ̃
c
it, i.e., it is invariant to the guess of wMit and wHit. Because we get the

same rc
it for any guess of wMit and wHit—and recall rc

it is what determines land use shares—
output is also invariant to the guesses,

Qc
it = r̃c

it

(
π

c|C
it

)− λ
θ
(

πC
it

)− 1
θ Lc

it, where r̃c
it ≡ rc

it/pc
itγ

c
L.

• Demand for labor and intermediates is not invariant to the guesses, because they depend on
the guesses directly, conditional on output,

Hc
it = γc

H
pc

itQ
c
it

wHit
and Mc

it = γc
M

pc
itQ

c
it

wMit
. (17)

• Hence, given any guess of wMit and wHit we back out the same land shares and output—
but not factor demands—because we are forcing the ζc

it to deliver the same land share and
output. Hence, when looping over wMit and wHit we are solving for factor market clearing
conditional on an output level.
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• We run this procedure above in the baseline laissez-faire model to recover ζc
it as model prim-

itives. We then keep those ζc
it terms fixed in the policy counterfactuals.

Unobserved payoff to nature AN
it . Given the θ

λ and λ estimates, we calibrate AN
it to fit the data

when running our across-nest estimation.

ln
(

AN
it

)
=

λ

θ
ln
(

PC
it

)
− 1

θ
ln

(
πC

it

πN
it

)
. (18)

Remaining parameters. The remaining parameters are either directly observed in the data or
taken from the literature: the Cobb-Douglas factor shares, the across-sector labor supply elasticity
ψ, the non-agricultural wages wHit, and the imported intermediate input price wMt.

Table 7: Model parameterization details.

Model section Parameter Source

Supply Land use elasticities ( θ
λ , λ) Substitution elasticities from supply estimation

Land endowment (L̄i) Surface area from agricultural censuses (Brazil 2017, Argentina 2018)
Labor endowment (HNi) Economically active population (Brazil 2010 population census, Argentina RENAPER 2023)
Wage in non-agriculture (wHit) County-averages from Brazil 2010 population census, Argentina 2014 MECON labor survey
World intermediate input price (wMt) Imported fertilizer prices (FAOSTAT)
Observed land productivity (zc

it) Agronomic yields (FAO-GAEZ)
Unobserved land productivity (ζc

it) Residuals from within-nest estimation (described in section D.1)
Unobserved payoff to nature (AN

it ) Residuals from across-nest estimation (described in section D.1)
Cobb-Douglas parameters (γc

L, γc
H, γc

M) Averaged across related literature (Sotelo, 2020; Pellegrina, 2022)
Across-sector labor supply elasticity (ψ) Related literature (Farrokhi and Pellegrina, 2023)

Demand CES elasticities (ηl , ηm, ηu) Demand estimation
Taste shifters (ac

ijt, ac
njt, ac

jt) Residuals from demand estimation
Total expenditure (Xjt) Expenditure on agricultural imports (FAOSTAT)

Intermediaries Bilateral trade costs (τij) Trade cost estimation (described in section C.4)
Marginal product ( f ′(qc

i , k)) Trade cost estimation residuals (described in section C.4)
Number of firms (Nc

i ) TRASE and DA-MAGYP

Other LUC emissions (eLUC
i ) Above- and below-ground carbon stock maps (Spawn and Gibbs, 2020)

NLUC emissions (ec,NLUC
i ) Life-cycle GHG values (Poore and Nemecek, 2018)

D.2 Equilibrium solver algorithm

To solve the equilibrium, I use a simple iterative algorithm that exploits the monotonicity of the
excess demand function in both output and factor markets. The algorithm iterates over the farm-
gate price vector {pc

i }i,c and wage vector {wHi}i, adjusting the price and wage “guesses” based
on the resulting excess demand. Note the intermediate input price vector {wMi}i is exogenous
since supply is foreign and perfectly elastic, so we do not need to solve for market clearing in the
intermediate input market. The steps of the algorithm are:

1. Outer loop (output market). Let the current guess for the price vector be { ṗc
i }i,c.

2. Inner loop (labor market). Given { ṗc
i }i,c, find the wage vector {wHi}i that clears labor mar-

kets by using the bisection method.

(a) The excess labor demand function at an initial guess {ẇc
Hi} and { ṗc

i }i,c is,

EDH
i (ẇHi) ≡ ∑

c
Hc

i (ẇHi; wMi, { ṗc
i })− sH|i (ẇHi; wHi)

(ψ−1)/ψ Hi.

Do the same for another guess ẅHi. Pick the starting guesses {ẇHi, ẅHi} such that
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EDH
i (ẇHi) and EDH

i (ẅHi) have different signs.

(b) Compute the midpoint guess as ŵHi =
ẇHi+ẅHi

2 .

(c) If the sign of EDH
i (ŵHi) is the same as EDH

i (ẇHi), then update ẇHi = ŵHi. Conversely,
if the sign of EDH

i (ẅHi) is the same as EDH
i (ẅHi), then update ẅHi = ŵHi.

(d) Repeat steps (a)-(b) until |ẇHi − ẅHi| < ϵH ∀i, where ϵH is the tolerance level.

3. Having solved the labor market equilibrium on the output price guess { ṗc
i }i,c, evaluate the

excess demand function for each commodity c, location i,

EDc
i ( ṗc

i ) ≡ ∑
j

Cc
ij( ṗc

ij)τ
c
ij − Qc

i ( ṗc
i ) where ṗc

ij =
ṗc

i
µc

i ( ṗc
i )

τc
ij.

4. Let { p̈c
i } be the updated guess, obtained by using EDc

i ( ṗc
i ) and a step size of αQ > 0,

p̈c
i = ṗc

i + αQEDc
i ( ṗc

i ).

Therefore, if EDc
i ( ṗc

i ) > 0 then p̈c
i > ṗc

i , and vice-versa. Because of monotonicity of the
excess demand function, the updated guess will take excess demand closer to zero. Set the
updated guess as the current guess, i.e., { ṗc

i } = { p̈c
i }.

5. Repeat steps 1-4 until EDc
i ( ṗc

i ) < ϵQ ∀i, c, where ϵQ is the tolerance level.

D.3 Model fit

Given the parametrization from Table 7, the model equilibrium is solved using the algorithm from
Appendix D.2. Figure 5 compares model outcomes to their counterparts in the data. Note that
despite using an inversion approach to discipline some parameters, this does not force a perfect
fit of the model. The reason is that productivities are inverted solely from the supply estimation
exercise, without imposing demand side information or solving the model.
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Figure 5: Model fit (spatial distribution of acreage and output).
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Notes: figure plots county-level model-implied outcomes versus their observed value in the data.

D.4 Welfare accounting

We begin by defining the welfare function that a (global) social planner would maximize in the
model. It consists of four components: consumer surplus (from every consumer country), pro-
ducer surplus (of landowners, farmers and intermediaries in South America), government rev-
enue, and the damages from the environmental externality,

W = CS + PS + G︸ ︷︷ ︸
≡S

−E × SCC, (19)

where we have defined S as the surplus generated by the market, without taking into account the
environmental damage.

D.4.1 Individual welfare components

To be fully general, let tc
ij denote any downstream tax on consumers, i.e., on their bilateral con-

sumption of commodity c, Cc
ij. Denote tc

i as any upstream taxes on producers of c in location i,
i.e., on their output Qc

i . Finally, denote sNi as any upstream subsidy on landowners in location i
on their forested land LN

i . On the producer side, we separate output taxes from land subsidies to
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separately target on-farm flow emissions (which is done by targeting a type of commodity) from
land use change emissions (which is done by targeting a location, regardless of which specific
commodity is produced). We now move on to specify each of the welfare components.

Environmental damages. The environmental damages are simply the sum of on-farm CO2-eq
emissions for each commodity, Ec

i , and land use change CO2-eq emissions EC
i , evaluated at the

social cost of carbon. Total emissions are,

E =

(
∑

i

(
∑

c
Ec

i

)
+ EC

i

)
.

Recall we aren’t interested in the level of W or the level of each of its components, but in how they
change between a baseline equilibrium and a counterfactual one. We denote the baseline equilib-
rium with a superscript ∗ and the counterfactual with a superscript ∗∗, and the difference in an
outcome X as ∆X = X∗∗ − X∗. The welfare change that is attributed to changes in environmental
damages is straightforward to compute as SCC × ∆E where,

∆E = E∗∗ − E∗.

Government surplus. The global government surplus is the sum of the government surpluses
of each destination j,

G = ∑
i

(
∑

c
tc
i Qc

i + tc
i,SACc

i,SA

)
− sNi LN

i︸ ︷︷ ︸
GSA

+ ∑
j ̸=SA

∑
i,c

tc
ijC

c
ij︸ ︷︷ ︸

Gj

,

where the South American surplus GSA consists of tax revenues from upstream output taxes tc
i

and downstream consumption taxes tc
i,SA minus subsidy expenditures on forested land sNi . The

government surplus of destinations other than South America just consist of consumption taxes,
since we are assuming foreign governments cannot levy taxes or subsidies directly on upstream
South American producers. The welfare change that arises from changes in government surplus
(and of each destination j) is,

∆G = G∗∗ − G∗ and ∆Gj = G∗∗
j − G∗

j .

Producer surplus. Producer surplus is the sum of producer surplus of intermediaries and farm-
ers. The surplus of the intermediaries is simply their profits,

PSI = ∑
i,c

Nc
i [ p̄

c
i fc(qc

i )− pc
i qc

i ] ,

where qc
i is the quantity purchased by each intermediary firm and Nc

i is the number of firms. The
welfare change that arises from changes in intermediary surplus is,

∆PSI = PS∗∗
I − PS∗

I .
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The producer surplus of farmers is captured by the farmer’s after-tax and after-subsidy revenue,

PSF,R = ∑
i

(
∑

c
(pc

i − tc
i )Q

c
i

)
+ sNi LN

i .

Notice the above captures the sum of payments to all factors (land, labor, and intermediates). The
welfare change that arises from changes in farmer surplus is,

∆PSF = PS∗∗
F,R − PS∗

F,R.

The welfare change that arises from changes in total producer surplus is,

∆PS = ∆PSI + ∆PSF.

Consumer surplus. Let P c
ij(C

c
ij) be the inverse demand curve of consumers in j for commodity c

produced in i. Then, consumer surplus is the area under the demand curve, minus the (after-tax)
cost of consumption,

CS = ∑
j

∑
i,c

(∫ Cc
ij

0
P c

ij(x)dx − (pc
ij + tc

ij)C
c
ij

)
︸ ︷︷ ︸

CSj

,

where CSj denotes the consumer surplus in destination market j (across all origin locations and
commodities). We don’t have a closed form for the inverse demand curve P c

ij(C
c
ij), so the CS level

cannot be computed directly. However, we do not need the level of CS, just the changes between
counterfactuals. Consider the indirect utility of the consumer in destination j,

Vj = max
Cc

ij

Uj s.t. ∑
c

∑
i
(pc

ij + tc
ij)C

c
ij ≤ Xj.

Note that we have a closed form for the indirect utility because of the CES setup. Given a destina-
tion j price index Pj, we have Vj = Xj/Pj =⇒ Xj = VjPj. Hence, to attain utility level Vj at Pj we
would need Xj of income. Consider a baseline and counterfactual equilibrium denoted by ∗ and
∗∗, which yield indirect utilities of V∗

j and V∗∗
j at price indices P∗

j and P∗∗
j . Define xj as how much

more we have to increase income from the baseline so that the counterfactual level of utility V∗∗
j

can be attained at the baseline prices P∗
j ,

V∗∗
j = (X∗

j + xj)/P∗
j =⇒ xj = P∗

j V∗∗
j − X∗

j .

We can therefore evaluate xj from the model counterfactuals, and then use it to compute the
change in total consumer surplus as follows,

∆CS = ∑
j

∆CSj where ∆CSj = xj.
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D.5 Additional simulation results

D.5.1 Regressivity results

Figure 6 shows that the rate at which farmer income is effectively taxed (as a result of the down-
stream tax) is lower in higher-income locations. The left panel shows the impact on farm-gate
prices expressed as percentage point declines, i.e., the policy’s implied ad-valorem tax on farm-
gate prices. The right panel shows the impact on farmer income expressed as percentage point
declines, i.e., the policy’s implied income tax on farmers. Both measures indicate the implied in-
come tax is highest for farmers in the poorest regions, making the policy regressive across space.

Figure 6: Regressivity of downstream taxes.
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Notes: all scatter plots are constructed from county-level observations. Black curves are fitted second-order polynomi-
als of county-level observations, while dark markers display the binned scatter plot. The vertical axes is the percentage
point change in (i) the upstream farm-gate price and (ii) farmer income, as a result of the downstream tax. The hori-
zontal axes show the baseline income of the county, expressed in percentile terms. A positive slope of the scatter plots
means that counties that are higher-income at baseline have their income effectively taxed at lower rates.

D.5.2 Leakage results

Figure 7 compares the abatement impact of the downstream tax when imposed by the domes-
tic regulator versus a foreign trade partner. In the latter case, regulation is incomplete across
consumer markets, hence the drop in exports to the EU is offset in equilibrium by increased con-
sumption in non-EU markets, including the domestic market.

Panel A shows the tax’s corrective potential is substantially limited by this consumption leak-
age effect: over 80% of the emissions reductions attributed to the drop in EU consumption are
offset by increased consumption elsewhere. Panel B shows the case with complete regulation as
contrast: there is no re-routing of shipments, so emissions drop across all destination markets.
Note the emissions changes in the figure take into account substitution away from beef and into
crops, i.e., domestic production leakage from beef to crops (given beef is taxed at a higher rate
than crops due to its higher emissions footprint). Specifically, the emission changes reported in
the figure include the growth in crop-related emissions generated by substitution from beef into
crops. Therefore, the fact that all bars in panel B are negative indicate the drop in emissions from
beef production more than offsets any increase in emissions from crop production.
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Figure 7: Emissions abatement potential of downstream taxes.
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Notes: emissions are computed across all commodities, which are then aggregated up to the destination level, thus
delivering the changes in emissions attributed to the changes in consumption of each destination (shown in grey, with
the net emissions impact across all destinations in black).

D.5.3 Extension with migration

Related work in the agricultural trade literature typically models labor as perfectly mobile within
a country, but not across countries. If workers do not have idiosyncratic shocks over locations
within a country, this implies a single country-level wage in equilibrium, as in baseline specifi-
cations of Costinot, Donaldson and Smith (2016) and Farrokhi and Pellegrina (2023). To allow
wages to vary by both sector (agriculture, non-agriculture) and location, I follow an extension
from Farrokhi and Pellegrina (2023) that uses a Roy model of labor supply where workers have
idiosyncratic shocks over sectors and locations. Let sH|it denote the share of workers choosing
agriculture conditional on choosing location i, and let sit denote the share of nation-wide popula-
tion choosing location i. Assuming the idiosyncratic shocks follow an extreme value distribution,
these shares have the following closed form expression,

sH|it =
wψ

Hit

wψ
Hit + wψ

Hit

, sit =
Vψ

it

∑i′
(

Vψ
i′t

) , Vit ≡ νit

(
wψ

Hit + wψ
Hit

) 1
ψ

,

where ψ is the elasticity of substitution across sectors and locations and νit is a location shifter.
Note that in the baseline model with no migration the sit term is exogenous and taken from the
data as the share of nation-wide population in county i. The share of nation-wide population
working in location i and in agriculture is sHit = sH|it × sit. Effective labor supply to location i

is s(ψ−1)/ψ
Hit Ht, where Ht is nation-wide population. Note (ψ − 1)/ψ < 1 reflects selection due to

heterogeneity (without idiosyncratic shocks the effective labor supply would simply be sHit × Ht).

To make my migration extension as closely comparable to my baseline specification, I calibrate
the νit parameters so that the model-implied population shares sit match the population shares
in the data (which are the same as the population shares in the baseline model). Given location
i population shares from the data, denoted s∗it, and the equilibrium wages {w∗

Hit, w∗
Hit} from the

28



baseline model we can find the vector νit such that the following holds,

s∗it =
ν

ψ
it Ṽψ

it

∑i′
(

ν
ψ
i′tṼ

ψ
i′t

) where Ṽit =
[
(w∗

Hit)
ψ + (w∗

Hit)
ψ
] 1

ψ .

This guarantees that the population distribution of the baseline model and the migration exten-
sion coincide in the laissez-faire equilibrium. The only modification to the equilibrium solver al-
gorithm from section D.2 is that the labor supply function changes because the population shares
are endogenously determined. At a given wage and price guess {ẇc

Hi} and { ṗc
i }i,c, the excess

labor demand function is now as follows,

EDH
i (ẇHi) ≡ ∑

c
Hc

i (ẇHi; wMi, { ṗc
i })− sHi (ẇHi; wHi)

(ψ−1)/ψ H.

Implications for policy counterfactuals. To assess the role of migration for the paper’s core re-
sults on policy targeting, I compare my downstream tax counterfactual results with and without
migration. Figure 8 is a version of Figure 4-A from the main text, which shows the change in up-
stream production in the baseline specification without migration (in solid lines) and the migration
extension (in dashed lines). The downstream tax leads to a larger drop in core emissions-light ar-
eas relative to frontier emission-intense areas, both when there is migration and when there isn’t.
This is the paper’s main spatial mistargeting result, and it is reflected by the positives slopes of
the figure under both mobility assumptions.

Figure 8: Role of migration for tempering mistargeting of a downstream tax.
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Notes: the figure plots the relationship between upstream emissions intensities and production responses to a down-
stream tax under the default conduct assumption of imperfect competition (for the beef sector). The horizontal axis
reports the emissions intensity of each upstream location (tonnes of CO2e/tonne of output). The vertical axis reports
the percentage point change in upstream production due to the downstream tax. Lines of best fit are reported sepa-
rately for the baseline assumption of no migration (solid line) and the extension with migration (dashed line).

When migration is introduced, the slope of the figure remains positive but is flatter. This means

29



that mistargeting remains, but is quantitatively less severe. Hence, allowing migration tempers
some of the spatial mistargeting, but doesn’t fully eliminate it. To see why, notice the downstream
tax is a larger tax on beef than on crops because of beef’s larger carbon footprint. Because beef
production is dominant in frontier areas (where it has comparative advantage), the downstream
tax ends up taxing the good in which the frontier region specializes, thus inducing labor to migrate
away to core regions. For this reason, production ends up dropping relatively more in frontier
areas than in core areas when migration is allowed, thus explaining the flattening of the slope.

Appendix E. Institutional background

E.1 Supply chain structure

E.1.1 Beef cattle

Commercial cattle rearing consists of three stages: breeding, backgrounding, and finishing. In
the breeding stage, calves are kept with their mothers, feeding exclusively on milk and grass.
Backgrounding follows, which consists of developing the calf’s frame at a moderate pace so that it
resists the rapid weight gains it will be subject to in the final finishing stage. Breeding takes place
on pasture, whereas diets in the backgrounding and finishing stage typically include feed. If the
finishing is done at a feedlot then diets are exclusively feed-based. Although instances of vertical
integration between slaughterhouses and feedlots certainly exist, integration further upstream
with ranchers at the breeding stage is rare, resulting in a fragmented supply chain. Hence, the
upstream actors most likely to be involved in deforestation practices—the breeders, since they
rely exclusively on pasture to feed their cattle—are typically not integrated with the downstream
agribusiness firms. This poses certification challenges that are unique to cattle, in contrast to
commodities with shorter and more vertically integrated supply chains, such as coffee.

Vertical integration between ranchers and meatpackers is less common in beef than in other
livestock sectors such as poultry for structural reasons. Commercial poultry farming involves high
start-up infrastructure costs to build chicken houses, and requires a steady supply of grain-based
feed and antibiotics to prevent disease outbreaks. In a typical vertical arrangement, downstream
processors provide the initial capital to build the infrastructure, and may also finance the inputs,
in exchange for a share of the farmer’s output. By contrast, cattle require grazing on extensive
pasture land in the early stages of their life, therefore infrastructure and feed costs are not critical
constraints, and they take at least two years to reach slaughter weight. Both of these factors result
in limited scale economies from integration (Crespi and Saitone, 2018). Moving beyond beef cattle,
vertical integration is substantial in sectors such as fresh fruits and vegetables because of the wide
variation in quality and their high perishability: integration allows processors to control quality
and minimize lags between harvest and processing (Otsuka, Nakano and Takahashi, 2016). By
contrast, the gains from vertical integration in cash crops such as soybeans are smaller due to their
storability and relatively homogenous quality.

In Argentina, the beef supply chain begins with a primary sector consisting of approximately
130,000 breeding and finishing establishments, of which 52% hold less than 100 head of cattle.3

Live cattle are purchased from these establishments by slaughterhouses, of which there are ap-
proximately 400. Vertical integration between breeders and slaughterhouses is limited compared
to other animal agriculture sectors such as poultry. Around half of cattle transactions take place
directly between the breeding establishment and the slaughterhouse, a quarter is intermediated by

3Source: SENASA.
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a broker, and the remaining quarter takes place in local spot markets/auctions (Bisang, Santagelo,
Anlló and Campi, 2007). In Brazil, as of 2017 there are 2.5 million cattle ranching establishments,
73% of which are less than 50 ha, 79% of which hold less than 50 head of cattle, and 76% of which
are family farms.4 As in Argentina, the supply chain is vertically unintegrated and divided into
three parts: breeders, finishers, and slaughterhouses. Note that over 70% of beef output in both
countries is consumed domestically.5 This is in contrast to cash crops such as soybeans, which are
almost entirely exported. Argentina and Brazil together hold approximately 20% of the world’s
cattle stock, produce 20% of the world’s beef, and account for 30% of world beef exports.6

E.1.2 Soybean

In Argentina, there are roughly 60,000 soybean producers of heterogenous size. 80% of produc-
ers are relatively small, with a planted area less than 260 ha.7 Raw soybeans are purchased from
farmers by agribusiness firms such as Cargill, Louis Dreyfus, and ADM, either for direct export in
raw format, or for processing into soybean oil and meal. A quarter of total soybean production is
exported raw, while the remainder is processed, with 70-80% of the processed products exported.
As of 2012, there are a total of 50 soybean crushing plants, corresponding to 37 firms. The top 8
firms account for 80% of national processing capacity and over 90% of exports (Pierri, Wesz Ju-
nior et al., 2017). These firms typically hold state of the art storage and processing facilities (grain
elevators, silos, etc.) as well as their own port terminals along the Paraná river. High entry costs
exist in the form of large investments in physical infrastructure and the development of a logisti-
cal/marketing network. The industry structure is similar in Brazil, the main difference being that
export of raw soybeans is more common (Burgos, Mattos and Medina, 2014). As of 2017 there
are 236,245 soybean farms—of which 84% are less than 200 ha and 70% are family farms—and 96
crushing facilities in Brazil.8

Both countries underwent similar liberalization and privatization processes in the 1990s that
spurred agricultural commodity exports and the expansion of multinational agribusiness firms.
First, price support programs were either eliminated or scaled down in both countries. For ex-
ample, Argentina dismantled its Junta Nacional de Granos in 1991, whose purpose was to purchase
grain crops at a guaranteed minimum price. Second, exports duties on agricultural commodities
were either eliminated or significantly reduced, raising the international competitiveness of lo-
cal producers. For example, the 1996 Kandir Law in Brazil exempted export goods from paying
domestic circulation duties. Third, the management of port authorities was decentralized to sub-
national/local governments, establishing the legal framework for large multinationals to build
their own processing facilities within private port terminals. In Argentina this was enabled with
the approval of Law 24,093 in 1992, and in Brazil with Law 8,630 in 1993.

The main driver of soybean demand throughout the sample period has been Chinese economic
growth, reflected by the increase in Chinese soybean imports, in particular from Argentina and

4Sources: IBGE Table 6783 and Table 6910 and Table 6783.
5Of the beef that is exported, over half goes to Asia, and 20-30% to Europe. Jointly, Argentina and Brazilian beef

exports account for nearly 30% of world beef exports. By itself, Brazil’s share is 20%, making it the world’s single largest
beef-exporting country. Source: FAOSTAT.

6The other major countries with large cattle stocks are India (12% of the world cattle stock), China (7%), and the
United States (6%). The next major producers after Argentina and Brazil are the United States (18% of world produc-
tion) and China (9%). The next major exporters after Argentina and Brazil are the United States, Australia, and India,
with world export shares between 10-15% each. Source: FAOSTAT.

7Source: MAGYP.
8Source: IBGE Table 6957, Table 6959, and TRASE.
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Brazil in Figure 9. The main use of imported soybeans in China is for animal feed, particularly
the hog industry. There is substantial work, both policy institution reports and academic papers,
documenting the link between Chinese economic growth, shifts towards more meat-intense diets,
and the ensuing demand for soybean-based animal feed. For example, see He, Baiocchi, Hubacek,
Feng and Yu (2018) for Chinese shifts towards meat-intensive diets, Peine (2013) for the link be-
tween the Chinese pork industry and Brazilian soybeans, and on the policy side, soybean outlook
reports from the USDA.

Figure 9: Evolution of soybean imports (China versus World).
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Notes: the time-series plot above is constructed using soybean import quantities (million metric tonnes, in raw bean
format) from FAOSTAT. “China” corresponds to mainland China in the FAOSTAT classification.

E.1.3 Maize

The maize supply chain is similar to that of soybeans in that Argentina and Brazil consistently rank
among the world’s top 10 producers and exporters, with most exports going to Asia. In terms of
share of global maize production, Brazil holds 7% and Argentina holds 4%. In terms of share of
the global maize export market, Brazil holds 30-40% while Argentina holds 10-15%. Production
is slightly less export-oriented than soybeans, with export shares of production ranging between
30-40% for Brazil and 50-60% for Argentina. A notable similarity with the soybean sector is that
the same agribusiness firms tend to overlap in both commodities. For example, Bunge and Cargill
are large players in both maize and soybeans.

E.1.4 Other commodities

Beyond cattle, soybean, and maize, there are other commodities we used in the estimation of
the land use model: wheat, rice, sunflower, sugarcane. Given we do not have agribusiness data
for these commodities, we only briefly discuss the features of their supply chains in this subsec-
tion. Note that the commodities for which we do have agribusiness data (cattle, maize, soybean)
and which are the focus of the analysis, represent over 85% of agricultural land in both countries.
Hence, to the extent the remaining commodities for which we do not have agribusiness data repre-
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sent a small land share (wheat, rice, sunflower, sugarcane), we do not expect omitting the specifics
of their market structure to play a major quantitative role. All market shares reported over the
next paragraphs for each commodity are from FAOSTAT, and are averages between 1995-2018.

Rice. Brazil often ranks within the top 15 rice producers and exporters in the world, while Ar-
gentina is not a major rice producer nor exporter. In terms of shares of global production, Brazil
holds 2% and Argentina holds less than 1%. In terms of shares of the global export market, Brazil
holds roughly 10% while Argentina holds less than 5%. Farmers sell their output to coopera-
tives/traders, similarly as in maize and soybeans. In contrast to maize and soybeans, most pro-
duction is consumed domestically (less than 20% of Brazilian production and less than 35% of
Argentine production is exported). Traders purchasing the raw commodity from farmers primar-
ily add value by providing storage, drying, and processing services (da Cunha and Wander, 2023).

Wheat. Argentina typically ranks among the world’s top 10 producers and exporters of wheat,
with roughly 60% of its output being exported. Brazil is not a major player in wheat production,
with output levels being roughly half that of Argentina. In terms of shares of global wheat produc-
tion, Argentina holds 2% while Brazil holds less than 1%. In terms of shares of the global wheat ex-
port market, Argentina holds 7% while Brazil holds less than 2%. Similarly to maize and soybean,
intermediaries purchase wheat from farmers and add value through storage/crushing/milling
services, after which the semi-processed product is sold on to food processors (Bisang, 2010).

Sunflower. Argentina typically ranks among the world’s top 10 producers and exporters, while
Brazil is not a major player. In terms of shares of global sunflower seed production, Argentina
holds 10% while Brazil holds less than 1%. In terms of shares of the global sunflower export
market, Argentina holds 5% while Brazil holds less than 1%. Upon purchasing the sunflower
seed from farmers, agribusiness firms typically provide crushing services to separate sunflower
oil from meal (Ingaramo and Feoli, 2008).

Sugarcane. Brazil is one of the world’s largest sugar cane producers, while Argentina is a minor
player. In terms of shares of global sugarcane, Brazil holds 30-40% and Argentina holds less than
2%. In terms of shares of the global cane sugar export market, Brazil holds 50% while Argentina
holds less than 1%. In contrast to other crops, sugarcane is not only used for food but also as
feedstock for ethanol-blend gasoline, with roughly half of the harvest used for fuel (USDA.)

E.2 Land clearing process and release of above- and below-ground carbon

Both above- and below-ground carbon is released during the deforestation process. Above-ground
carbon is primarily stored in tree trunks, leaves, and other above-ground forms of biomass, while
below-ground carbon is mainly stored in roots, soil, as well as in the form of peat. Below-ground
carbon is released after the soil is disturbed through oxidation, and as roots/peat are left to decay
or directly burned. Different forests vary in the extent to which carbon is primarily stored above-
or below-ground. For example, for the Amazon, 50-60% is stored above-ground.9 By contrast,
most carbon in Indonesian rainforests, is stored below-ground in the form of peat.

The speed at which both types of carbon are released depends on how the deforestation pro-
cess takes place. For example, if the vegetation is burned, the carbon is immediately released into
the atmosphere. However, if vegetation is cut and left to decay, the carbon is gradually released

9Source: Scientific American.
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as biomass decomposes. In the context of South America, given the primary driver of deforesta-
tion is to use the land for agriculture rather than to exploit the timber resource, it is common for
deforestation to take place through the burning of vegetation. Apart from being a cost-efficient
way to deforest, the resulting ash provides nutrients for the soil that aids conversion of land to
agricultural use. Given both above-ground and below-ground biomass is disturbed when fully
converting forested land to agricultural use, in my model quantification I assume both types of
carbon are released into the atmosphere. Because the model counterfactuals are across steady
states, there is not really a notion of speed of release of carbon in the model: I simply assume that
between two counterfactuals the full stock of carbon in a deforested area is released. I have per-
formed robustness using only above-ground carbon and the results do not significantly change
because i) most carbon in the Amazon context is aboveground carbon, and more importantly ii)
aboveground and belowground carbon are highly spatially correlated (as the carbon maps in the
main draft show). Hence, the spatial correlation between carbon intensity and market power is
the same regardless of whether we use both carbon measures or the aboveground measure alone.

E.3 Agricultural greenhouse gas emissions

Figure 10: Alternative measures of emissions footprints (per kcal and per protein content).

Maize

Legumes

Wheat & Rye

Potatoes

Tofu (soybeans)

Rice

Eggs

Pork

Chicken

Fish (farmed)

Beef

0 10 20 30

kg of CO2e per 1000 kcal

Animal based

Plant based

Legumes

Wheat & Rye

Maize

Tofu (soybeans)

Potatoes

Eggs

Chicken

Fish (farmed)

Rice

Pork

Beef

0 100 200 300 400 500

kg of CO2e per kg of protein

Animal based

Plant based

Notes: the figures above are constructed from the publicly available dataset on food emissions footprints (kg of CO2e
per 1000 kcal and per kg of protein) from Poore and Nemecek (2018).

References

Bisang, R. (2010). La Cadena de Valor del Trigo: Oportunidades y Desafı́os en el largo plazo. In: El trigo en Argentina y
el mundo (19 de mayo de 2010, Buenos Aires, Argentina).
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