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Abstract

I build an empirical model of the South American agricultural sector to show how

environmental policy is transmitted along a supply chain when regulation at the ex-

ternality’s source is infeasible. Given obstacles to a first-best carbon tax on farmers,

I show how second-best alternatives—downstream agribusiness taxes—reduce up-

stream emissions but their effectiveness is limited by poor targeting, while also be-

ing regressive. Agribusiness monopsony power worsens targeting by lowering pass-

through to upstream farmers in uncompetitive and emissions-intense regions, thus

eroding the Pigouvian signal where social cost is highest. By contrast, small-scale

but well-targeted upstream interventions perform robustly when markets face pre-

existing distortions.
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1 Introduction

In many of the major industries contributing to climate-change, the environmental exter-

nality often co-exists with other pre-existing distortions—market power being a case in

point. How can we regulate such industries efficiently, and what are the distributional

consequences of regulation? This paper provides an empirical framework to answer

this question in the context of the South American agricultural sector, a global agricul-

tural powerhouse with a major environmental impact, where the supply chain connect-

ing farmers to consumers is intermediated by a concentrated agribusiness sector. A key

feature of this setting is that agricultural emissions are mostly generated at the atomistic

stage of the supply chain rather than at the concentrated stage. It is the millions of up-

stream farmers who make the environmentally-relevant decisions, mostly through their

land-use choices, and not the large agribusiness firms further downstream. Given en-

vironmental policies are easier to implement and enforce at the concentrated end of the

supply chain, this raises the question of how much of their Pigouvian signal is eroded

before reaching the upstream farmers whose incentives they ultimately aim to correct.

The goal of this paper is to evaluate how the transmission of environmental policy oc-

curs along a supply chain, in particular when pre-existing distortions lie between the

stage where emissions are generated and the stage where regulation is feasible. The

research challenge involves measuring the correlation between the two distortions of

interest—the environmental externality and market power—and developing an equilib-

rium framework to study how they interact under different policy tools. To address this,

I combine a variety of data sources to build a county-level panel of agricultural sup-

ply and demand, which I use to estimate an equilibrium model of the South American

agricultural sector. On the model’s supply side, I incorporate key margins determining

emissions: how much land farmers deforest, which commodity they produce, and rich

heterogeneity across the geographic locations where deforestation and production take
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place. On the demand side, I incorporate the funnel-like structure of agricultural supply

chains: atomistic farmers at the upstream stage sell their output to a concentrated sector

of downstream agribusiness firms with monopsony power.

Despite being a crucial item on the sustainable development agenda, environmental

policy in developing world agriculture faces multiple obstacles. First, the distributional

effects of an agricultural carbon tax are regressive on both demand and supply: poor

households spend a larger share of their income on food, and farmers often lie at the bot-

tom of the income distribution. Second, agricultural commodities are traded in highly in-

tegrated global markets, resulting in substantial “leakage” risk: if one country unilaterally

sanctions its imports from an emissions-intense producer, the goods are diverted to non-

regulated consumer markets and the externality remains uncorrected. Third, agricultural

supply chains in developing countries are often fragmented, funnel-shaped, and subject

to pre-existing distortions that may interfere with the performance of market-based poli-

cies. Beyond providing an ideal setting to study second-best environmental policy, agri-

culture is important in and of itself, accounting for 26% of global anthropogenic emissions

(Poore and Nemecek, 2018). In particular, South American agricultural emissions are 27%

of world agricultural emissions (FAOSTAT), exceeding those of major sectors of the US

economy such as transport or electricity generation.1

On the measurement side, the key empirical result is that I estimate lower supply elas-

ticities in frontier agricultural regions near densely forested areas. I obtain this result by

modeling farmer decisions with a nested discrete choice model of land use that incorpo-

rates an extensive margin of converting forested land into new agricultural land, as well

as the choice of which specific agricultural commodity to produce on existing agricultural

land. Hence, the model incorporates the two key margins driving agricultural emissions

within a single framework, while delivering estimates that are consistent with prior work

estimating each margin separately. While I do not fully disentangle the microfoundations

1South American agricultural emissions have hovered around 3 Gt CO2e since 1990. US emissions from
industry, electricity, and transport in 2018 were 1.5 Gt, 1.8 Gt, and 1.9 Gt, respectively. (EPA, 2018)
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for why supply is less elastic in remote regions, most potential mechanisms are related

with these regions being less developed overall. One leading explanation for why farm-

ers in remote regions are relatively sluggish in their production responses is they are more

constrained in their access to the inputs required to adjust production.

For the model’s demand side, I use granular data on domestic trade flows to document

concentration among agribusiness intermediaries, a feature which I embed into my model

with a layer of oligopsonistic intermediaries between farmers and final consumers. The

farm-gate prices farmers receive are therefore marked down from the marginal revenue

they generate for the intermediary, with the size of the markdown depending on two key

objects: the supply elasticities of farmers and the degree of agribusiness concentration.

Given the market power of intermediaries is stronger when facing inelastic farmers, the

geographic heterogeneity in supply elasticities is inherited by the geographic distribution

of monopsony power. Because remote regions are the most emissions-intense and have

the least elastic supply, I find a positive spatial correlation between the degree of market

power and the environmental externality’s intensity.

The first part of my counterfactual analysis shows how a feasible environmental pol-

icy is transmitted along the supply chain. While a carbon tax at the emissions source,

i.e., on upstream farmers, theoretically attains the first-best through the textbook Pigou-

vian mechanism, this type of policy is mostly absent in developing world agriculture due

to logistical enforcement challenges as well as political infeasibility. Motivated by these

constraints, I evaluate a policy that is feasible but second-best: a uniform tax (based on

the average carbon content of each commodity across upstream producers) levied at the

downstream stage on agribusiness firms. An international version of this is a carbon-

border adjustment levied at the port, while a domestic version is a flat carbon tax at the

retail stage. Given the spatial pattern of supply elasticities, the downstream tax ends up

being spatially mistargeted because it causes production to drop least in remote upstream

locations where the environmental cost is highest. Because of inelastic supply, these re-
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mote regions are also where farm-gate prices drop most. Since these locations are among

the poorest, the distributional effects of a downstream tax are regressive on the supply-

side: the income of poor farmers is implicitly taxed at a higher rate than that of rich

farmers. Finally, because the tax needs to be passed through the supply chain to farm-

ers to shift their production incentives, agribusiness monopsony power plays a role by

reducing pass-through and eroding the upstream transmission of the Pigouvian signal.2

The second part of my counterfactual analysis shows how a regulatory agency’s opti-

mal choice of policy instrument depends on the previously mentioned spatial correlation

between market power and emissions intensity. Downstream policies, such as the taxes

from the first part of my analysis, are mistargeted because they do not take into account

the spatial heterogeneity in emissions intensities across upstream farmers. Moreover,

market power worsens targeting by lowering pass-through most to the least competitive

upstream locations, which are also the most emissions-intense. By contrast, policies that

are directly implemented upstream, such as a forest subsidy, are better targeted and ro-

bust to market structure because they avoid the pass-through distortions the downstream

tax is subject to. However, these policies come with an enforcement cost that limits their

scalability. Thus, the regulator faces a trade-off between targeting and scale when choos-

ing between the two types of tools, with the starkness of the trade-off depending on the

correlation between market power and the environmental externality. If the correlation is

positive, as I find in my setting, market power worsens the targeting of the downstream

tax, thus favoring direct implementation upstream (even if at small scale). If the corre-

lation were negative, as it could well be in other empirical contexts, then market power

would improve targeting by raising pass-through where environmental cost is highest.

These qualitative results on the role of market power for the transmission of environmen-

2Theoretically, pass-through in an imperfectly competitive market can be incomplete, complete, or more
than complete, depending on the curvature of the side of the market subject to market power (Bulow and
Pfleiderer, 1983; Weyl and Fabinger, 2013). In a monopoly problem this is determined by the curvature of
demand, while in a monopsony problem the relevant analogue is the curvature of supply. In my empirical
setting the log-curvature of supply is such that monopsony power delivers incomplete pass-through.
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tal policy add nuance to the classic intuition that by depressing quantities “the monopolist

is the conservationist’s friend” (Solow, 1974).

In terms of related literature, this paper contributes to the intersection of industrial or-

ganization and environmental economics (Buchanan, 1969; Ryan, 2012; Fowlie, Reguant

and Ryan, 2016) by showing that market power can be ambiguous for the transmission of

environmental policy. The sufficient statistic that resolves this ambiguity is the correlation

between the two distortions—the degree of market power and the environmental exter-

nality’s intensity—since it determines where the pass-through of the Pigouvian signal is

strongest. Moreover, by focusing on how firms exercise market power on their upstream

suppliers I open a distributional channel on the supply side that contrasts with most

work on environmental policy incidence on consumers (Bento, Goulder, Jacobsen and

Von Haefen, 2009; Fabra and Reguant, 2014). Second, my paper connects the agricultural

trade literature (Costinot, Donaldson and Smith, 2016; Sotelo, 2020; Pellegrina, 2022) to

the land-use change literature from agricultural economics (Roberts and Schlenker, 2013;

Scott, 2013; Souza-Rodrigues, 2019). The trade literature uses the Ricardian framework

of Eaton and Kortum (2002) to study how different commodities are allocated across ex-

isting agricultural land, but abstracts from the extensive margin of land conversion. By

contrast, the land-use studies typically model the land-use change margin as binary—

land is either left in its natural forested state or used for agriculture broadly defined—but

abstracts from which specific commodities are produced. My nested model incorporates

both choice margins. Third, this paper relates to a growing literature in trade and the

environment (Conte, 2020; Conte, Desmet, Nagy and Rossi-Hansberg, 2021; Nath, 2025;

Cruz and Rossi-Hansberg, 2024; Copeland, Shapiro and Taylor, 2022; Kortum and Weis-

bach, 2017; Farrokhi and Lashkaripour, 2021; Hsiao, 2021). I contribute by focusing on the

policy implications of the interaction between market power and the spatial heterogene-

ity in emissions intensities. Finally, this paper relates to recent studies on monopsony

power in developing economies (Mitra, Mookherjee, Torero and Visaria, 2018; Bergquist
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and Dinerstein, 2020; Chatterjee, 2023; Rubens, 2023; Dhingra and Tenreyro, 2020; Zavala,

2021), most of which focuses on the welfare impacts of market power per se. Instead, I

incorporate market power to understand how it interferes with environmental policy.

2 Data

I construct a county-level panel of agricultural supply and demand from 1995-2017 using

various data sources from Argentina and Brazil. The supply side consists of a county-

level panel of land use, agricultural output, yields, and farm-gate prices for beef cattle,

soybeans, maize, wheat, rice, sunflower, and sugarcane. On the demand side I connect

each county’s production to its nation-level destination markets using trade flow data.

Geographic unit of analysis and temporal frequency. The Argentine data is reported

at the department level (“partidos”). For Brazil I use time-consistent spatial units from

Ehrl (2017): “Areas Minimas Comparaveis” (AMC). Hence, the term “counties” refers to

Argentine departments and Brazilian AMCs.3 Given most of the data is from decadal

agricultural censuses, changes over time are interpreted as long-run changes.

Land-use and agricultural output. County-level land use data is from decadal agricul-

tural censuses of Argentina and Brazil. For Argentina, I complement the census with the

Ministry of Agriculture’s “Datos Agroindustriales” database (DA-MAGYP). Output data

on crops and livestock for Argentina is from the census, DA-MAGYP, and the phytosan-

itary authority (SENASA), while for Brazil it is from the census and two municipal sur-

veys: Produção Agrı́cola Municipal (PAM) and Pesquisa da Pecuária Municipal (PPM).

Agronomic productivity. High spatial resolution agricultural productivity data is from

FAO-GAEZ (IIASA/FAO, 2012) and is reported as potential yields predicted from agro-

climatic fundamentals.4 To calibrate the model’s productivity parameters I complement

3Argentina has 512 “counties” with an average size of 0.5 Mha (million hectares), while Brazil has 4,298
with an average size of 0.2 Mha. For comparison, the US has 3,243 counties with an average size of 0.3 Mha.

4To obtain “yields” for cattle I construct a measure of cattle productivity by projecting the FAO-GAEZ
pasture index on county-level cattle stocking rates from agricultural censuses (see Appendix B.1).
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FAO-GAEZ with realized yields from the output and land-use datasets reported above. I

use national-level data on extreme temperature from FAOSTAT to obtain temporal varia-

tion in agricultural productivity induced by weather shocks.

Trade flows. National-level trade flows of commodities are from FAOSTAT. To determine

sourcing within Argentina and Brazil I use domestic supply chain data from TRASE,

which is constructed from customs records and maps annual trade flows (in physical

quantities and FOB values) from source counties to national-level destination markets, as

well as to the agribusiness firms intermediating the transactions. In Appendix B.2 I pro-

vide a detailed description of the TRASE data and validate it against conventional data

sources such as FAOSTAT. For the beef sector in Argentina I complement TRASE with

meatpacker procurement records from DA-MAGYP.

Prices. Farm-gate prices are obtained from production value and quantity data. For

Brazil, the sources are the census and PAM. For Argentina I use DA-MAGYP. Destina-

tion prices are from TRASE quantities and free-on-board (FOB) values. Since values are

reported as port of export FOB, destination prices reflect the price the agribusiness firms

receive for delivery up to the port of export, but not to the final destination market. There-

fore, destination prices include domestic transport costs from farm to port, but not inter-

national costs to final destination (which are paid by final destination consumers).

Emissions. I compute land-use change emissions using carbon density maps constructed

from biomass data by Spawn and Gibbs (2020). For commodity-specific on-farm emis-

sions intensities I use life-cycle-assessment values from Poore and Nemecek (2018).

3 Stylized facts

First, I provide background on agricultural emissions, emphasizing how the upstream de-

cisions of farmers are the main driver of emissions footprints. Second, I present summary

statistics highlighting the funnel-shape of agricultural supply chains, introducing the no-
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tion that regulation is easier to enforce at the funnel’s downstream bottleneck. Third, I

show how land use patterns have evolved across time and space in my setting, highlight-

ing how multiple commodities compete with each other and shape aggregate land use

through comparative advantage. Finally, I describe how these features interact to moti-

vate the key ingredients of my model and the policy counterfactuals I run.

Fact 1: Agricultural emissions are primarily determined by three choice margins, all of

which take place at the upstream stage of the supply chain.

The first key determinant of agricultural emissions is the amount of land being cleared for

production. Over 80% of agricultural emissions are generated upstream before the com-

modities leave the farm-gate, mostly due to land-use change and on-farm sources such

as enteric methane (Figure 1-A). The land-use share is especially high in South America,

above 70%, compared to a world average of 40% (FAOSTAT). The upstream feature of

agricultural emissions contrasts with fossil fuels, where emissions are primarily released

downstream at the point of consumption (i.e., the burning of fuel for energy).

Figure 1: Sources of agricultural emissions along the supply chain.
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Notes: panel A shows emissions footprints (global averages) using publicly available data from Poore
and Nemecek (2018). See Appendix Figure 10 for footprints per kcal or protein content. Panel B shows
aboveground carbon density constructed from biomass data from Spawn and Gibbs (2020).

The second key determinant is the specific commodity being produced. Emissions

footprints vary widely across commodities, even after factoring in differing land require-
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ments (Figure 1-A). For example, beef contains 25 times more CO2e/kg of protein than

plant-based high-protein alternatives, largely due to enteric methane emissions unique

to ruminants. The third key determinant is the location where land clearing and produc-

tion take place: emissions footprints vary widely across space due to the highly uneven

geographic distribution of carbon stocks (Figure 1-B).

Fact 2: Agricultural supply chains are funnel-shaped, as atomistic upstream farmers

face a concentrated sector of downstream agribusiness buyers.

Farmers do not access consumer markets directly, but rather through intermediating

agribusiness firms. In Brazil there are 2.4 million upstream ranching establishments, 79%

of which hold less than 50 head of cattle, facing a concentrated sector of downstream

agribusiness firms. In the median county, the top three agribusiness firms account for

95% of sourced beef, with the top firm accounting for over 60% (Table 1).

Table 2 shows how agribusiness concentration correlates across upstream markets with

a crude accounting-based markdown—the ratio of the farm-gate price with respect to the

price the agribusiness firm receives at the port. Given this gap is partly driven by trans-

port costs, I control for an upstream location’s remoteness with a standard market access

measure. The correlation is negative: farm-gate prices are marked-down more in up-

stream markets with a higher concentration of buyers, even after controlling for remote-

ness. Moreover, the relationship is robust to the spatial granularity at which upstream

markets are defined. Needless to say, these empirical patterns should not be interpreted

as a causal relationship from market concentration to market outcomes. Concentration is

itself a market outcome, and just like prices and markdowns it is determined by supply

and demand primitives (Bresnahan, 1989). In a setting with potential monopsony power

the key primitive is the supply elasticity of farmers, which I estimate. Given supply elas-

ticities are shaped by land use decisions, we now turn to the drivers of land use.
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Table 1: Agribusiness concentration in upstream markets.

Brazil Argentina

Beef Maize Soybean Soybean

Number of agricultural establishments (sellers) 2,457,512 1,619,880 236,141 42,428
Number of agribusiness firms (buyers) 134 110 188 32
CR-1 (national market) 0.34 0.18 0.15 0.13
CR-3 (national market) 0.68 0.46 0.42 0.36
CR-1 (median across local upstream markets) 0.66 1.00 1.00 0.18
CR-3 (median across local upstream markets) 0.94 1.00 1.00 0.43
Share of upstream markets with only 1 agribusiness firm 0.14 0.86 0.73 0.01

Notes: upstream markets are defined at the county-level and for 2017, the latest year. Agricultural estab-
lishment data is from censuses. All other data is from TRASE. CR-N is the top-N firm concentration ratio.

Table 2: Upstream market concentration and accounting-based markdowns.

farm-gate price/agribusiness price ratio

OLS OLS OLS OLS OLS OLS

CR-3 -0.061* -0.062* -0.152*** -0.155*** -0.082*** -0.082***
(0.029) (0.031) (0.022) (0.023) (0.022) (0.021)

Market definition Mesoregion Mesoregion Microregion Microregion AMC AMC
Control for market access × ✓ × ✓ × ✓
Observations 260 260 899 899 4,663 4,663

Notes: regressions are at the upstream market-level for various degrees of spatial granularity across
columns. Farm-gate prices are from censuses and production surveys. Agribusiness prices are TRASE
FOB prices. CR-3 is the 3-firm concentration ratio. A location’s market access is its mean distance to sur-
rounding hubs (weighted by hub size), defined as MAi = ∑j sjd−1

ij where dij is distance between upstream
market i-hub j and sj is the hub’s share of national exports. HC-robust SE reported in parenthesis.

Fact 3: Agricultural commodities compete with each other in local land markets, shap-

ing aggregate land use patterns through comparative advantage.

One of the key developments in South American agriculture over recent decades has

been the dramatic expansion of soybean production (Figure 2-A). Growing international

demand, especially from Asia, has been a major driver behind such trends: over 70% of

soybean output is exported and over 50% of exports go to Asia (FAOSTAT). By crowd-

ing out other commodities, the soybean boom has resulted in a reallocation of agricul-

tural production across land markets. Cattle grazing has shifted from soybean-suitable

areas (central-south Brazil, mid-east Argentina) to cheaper land markets in frontier agri-
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cultural regions (northern Brazil, north and west Argentina). While soybean expansion

may not directly lead to deforestation, it can do so indirectly by displacing land-intensive

cattle grazing to frontier regions where the forests lie, as reflected by Figure 2-B-C-D.

Accounting for interactions between commodities is therefore crucial for understanding

deforestation in the South American context. In this setting, the most land-use-relevant

commodities are beef cattle (pasture), soybeans, and maize—they account for 85% of all

agricultural land, with pasture alone representing 70%.

Figure 2: The South American soybean boom across time and space.
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Implications for model specification and policy counterfactuals

Fact 1 suggests deforestation, commodity choice, and production location are key margins

driving agricultural emissions. Hence, I propose a model where farmers make decisions

along two emissions-relevant margins—how much land to clear and which commodity

to produce—in a setting with rich spatial heterogeneity. Having different commodities

compete for land allows comparative advantage to shape aggregate land use, in line with

fact 3. I model agribusiness firms as oligopsonists in upstream markets given they may

plausibly hold market power as buyers, in line with fact 2. This specification nests the

perfectly competitive case in order to alternate between conduct assumptions and evalu-

ate how market power affects the transmission of environmental policy.

The stylized facts suggest that if the externality’s source is upstream and atomistically

heterogeneous, but the downstream stage is concentrated and easier to regulate, then

policymakers face a trade-off between efficient upstream targeting and ease of imple-

mentation downstream. This contrasts with sectors such as electricity, where fossil-fuel

emissions are concentrated downstream among a few large firms, making targeted en-

forcement at the emissions source logistically easier. While a carbon tax on farmers is the

theoretically efficient solution, in practice it faces political barriers and requires enforce-

ment capacity due to the atomized nature of production. In reality, policy design revolves

around a range of second-best options at different stages of the supply chain.

Upstream policies often take the form of a conservation zone, which due to monitoring

costs can only be implemented for a narrow set of locations.5 By contrast, downstream

tools can operate at scale because they avoid such enforcement costs: they are imple-

mented at the supply chain’s bottleneck (e.g., a tariff at the port) and then leverage the

market mechanism to deliver a Pigouvian signal at scale to upstream farmers. However,

for a downstream tax to be efficiently targeted it requires precise tracing of the commod-

5One of the better known policies in this category is Brazil’s “Priority Municipality List”, in which
IBAMA (Brazil’s environmental protection agency) increased monitoring for a subset of high-deforestation
municipalities in the Amazon (Assunção, McMillan, Murphy and Souza-Rodrigues, 2023).
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ity’s upstream origin, a condition that is not always satisfied in our setting.6 This leaves

us with a uniform downstream tax based on an average emissions footprint, regardless

of the emissions-intensity of the commodity’s origin. Given small-scale upstream regu-

lation (e.g., conservation zones) and large-scale but coarsely targeted downstream taxes

(e.g., tariffs or domestic retail taxes) are often proposed in this policy space, I design my

policy counterfactuals to show how they are traded-off against each other in terms of their

targeting and scale properties, and how market power shapes this trade-off.

4 Model

4.1 Upstream supply

Every county i contains a continuum of fields indexed ω, each of which is owned by a

landowner. In each period t, the landowner selects a land use from a discrete choice set

consisting of a natural use option N and a nest of agricultural commodities C. If the

landowner allocates her field to a commodity c ∈ C, she does so by renting the land to a

farmer, who combines it with labor and intermediate inputs to produce the commodity.

4.1.1 Farmer’s optimization problem

Production technology. I model the farmer’s optimization problem over factors by fol-

lowing the recent literature (Sotelo, 2020; Farrokhi and Pellegrina, 2023). Let Lc
it(ω) de-

note the size of the field ω that a farmer rents from a landowner to produce commodity c.

The farmer combines land with hired workers Hc
it(ω) and an intermediate input Mc

it(ω)

6For empirical evidence on challenges Brazilian authorities face in monitoring farmers and meat-
packers face in tracing the origin (and carbon content) of their cattle purchases, see Barreto, Pereira, Jr. and
Baima (2017); Pereira, Rausch, Carrara and Gibbs (2020); Skidmore, Moffette, Rausch, Christie, Munger and
Gibbs (2021). Appendix E.1.1 provides further details on certification challenges in the beef supply chain.
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using a Cobb-Douglas technology that delivers Qc
it(ω) physical units of commodity c,

Qc
it(ω) = q̄ [Ac

it(ω)Lc
it(ω)]γ

c
L [Hc

it(ω)]γ
c
H [Mc

it(ω)]γ
c
M where Ac

it(ω) = Ac
it exp (εc

it(ω)) .

Ac
it(ω) is land productivity, consisting of a county-i mean Ac

it and a field-ω idiosyncratic

shock εc
it(ω), q̄ ≡ (γc

L)
−γc

L(γc
H)

−γc
H(γc

M)−γc
M is a scalar, and γc

L + γc
H + γc

M = 1.

Factor demand and unit cost function. Let pc
it denote the farm-gate price a farmer re-

ceives per unit of commodity c. On the cost side, let rc
it(ω) denote the rent paid by

the farmer for a unit of land on field ω, and let wHit and wMit denote the wage per

worker and the price of the intermediate input. Taking output and factor prices as given,

the farmer’s cost-minimization problem delivers demand for labor and intermediates as

Hc
it(ω) =

rc
it(ω)
wHit

γc
H

γc
L

and Mc
it(ω) =

rc
it(ω)
wMit

γc
M

γc
L

. Moreover, the unit cost of production on field

ω is given by κc
it(ω) = (wHit)

γc
H (wMit)

γc
M
(

rc
it(ω)

Ac
it(ω)

)γc
L
.

4.1.2 Landowner’s land use choice problem

Landowner payoff from each commodity. Farmer profits are zero in equilibrium, result-

ing in a zero profit condition pc
it = κc

it(ω) from which we can back out the rent per unit of

land on field ω—the landowner’s payoff when her field is allocated to commodity c—as

rc
it(ω) = rc

it exp(εc
it(ω)) where rc

it ≡ Ac
it
(

pc
it
) 1

γc
L (wHit)

− γc
H

γc
L (wMit)

−
γc

M
γc

L is the county-level

non-idiosyncratic component of landowner payoffs.

Landowner payoff from the natural use option. Let AN
it (ω) = AN

it exp(εNit (ω)) be the

landowner’s payoff per unit of land when the field is left in its natural state, consisting

of a county-i mean AN
it and a field-ω idiosyncratic shock εNit (ω). AN

it (ω) captures the

dollar-value of any incentives landowners have to keep part of their land forested, some

of which may be non-pecuniary (e.g., ecosystem services provided by forests that are

privately valued by landowners, such as prevention of soil erosion, flood risk mitigation).
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Observability of payoffs. Concretely, the discrete choice problem of landowner ω is,

max
{1, ... c , ... , C , N}

[
r1

it exp(ε1
it(ω)) , . . . , rC

it exp(εC
it(ω)) , AN

it exp(εNit (ω))
]

. (1)

Apart from the idiosyncratic shocks, the econometrician does not observe AN
it , so it will

be estimated. I allow county-level productivity (in the rc
it term) to be decomposed as

Ac
it = zc

itζ
c
it, where zc

it is observable (as measured by agronomic yields) while ζc
it is not.

Nesting assumption. I assume the idiosyncratic shocks are distributed Generalized Ex-

treme Value (McFadden, 1977; Goldberg, 1995; Train, 2009). This delivers a nested struc-

ture that allows shocks to be more correlated within nests than across. The GEV distribu-

tion has two key parameters: θ governs the variance of shocks while λ ∈ (0, 1) governs

their correlation within nest C. Higher values of θ correspond to lower variance, and

higher values of λ to lower correlation. Appendix A.1-A.2 provides a discussion of how

the textbook formulation of the GEV distribution maps to the land use model.

Share of land allocated to each land use. Let π
c|C
it be the probability commodity c is

chosen conditional on choosing nest C, while πC
it is the probability of choosing nest C.

Under our distributional assumptions we have a closed form for these objects,

π
c|C
it =

(
rc

it
) θ

λ

∑c′∈C
(
rc′

it
) θ

λ

and πC
it =

(
PC

it
)λ

(AN
it )

θ +
(

PC
it
)λ

with PC
it ≡ ∑

c′∈C

(
rc′

it

) θ
λ . (2)

PC
it is defined as the payoff of the agricultural nest. Technically, ln PC

it is the nest’s inclusive

value in the nested logit model. The share of land allocated to natural use is πN
it = 1−πC

it.

Quantity supplied. Unconditional choice probabilities can be written as πc
it = π

c|C
it πC

it.

Given a county’s total surface L̄i, its total acreage of commodity c is Lc
it = πc

it L̄i. Moreover,

we have a closed form for the county-level supply of commodity c,

Qc
it =

∫
ω

Qc
it(ω)dω = r̃c

it

(
π

c|C
it

)− λ
θ
(

πC
it

)− 1
θ Lc

it, (3)
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where r̃c
it ≡ rc

it/pc
itγ

c
L. As λ → 1, correlation between commodities disappears and the

nested model collapses to a multinomial model (Costinot et al., 2016; Sotelo, 2020). The

nested structure is important because a multinomial model restricts substitution between

commodities to be just as easy as substitution between natural and agricultural use.

Demand and supply of non-land factors. The farmer’s optimization problem delivers

demand for non-land factors at the field-level. Integrating over fields delivers county-

level aggregates, Hc
it = γc

H
pc

itQ
c
it

wHit
and Mc

it = γc
M

pc
itQ

c
it

wMit
. As for the supply of non-land fac-

tors, I assume labor is mobile across sectors but not across locations. Each location has an

exogenous endowment of workers Hit that endogenously chooses between agriculture

and non-agriculture. I assume the worker’s sectoral choice problem follows a Roy spec-

ification where the share of workers supplying labor to agriculture is sH|it =
wψ

Hit

wψ
Hit+wψ

Hit
,

where ψ is the across-sector substitution elasticity and wHit is the non-agricultural wage.

Effective labor units supply to agriculture is therefore s(ψ−1)/ψ

H|it Hit. As for the intermedi-

ate input, I assume it is imported from abroad at price wMit = wMtτi, where wMt is the

international price and τi is a domestic trade cost to county i from its nearest port.7

4.2 Downstream demand

The demand side consists of two layers. First, agribusiness intermediaries buy commodi-

ties from upstream farmers in source counties indexed i ∈ I . Second, these intermediaries

sell the commodity (either in raw format or partially processed) to final consumers in des-

tinations indexed j ∈ J . Intermediaries hold market power as buyers in the upstream

market, but take prices as given in the downstream consumer market.

Agribusiness intermediaries. There are Nc
it identical agribusiness intermediary firms,

each purchasing qc
it units of raw commodity c from source i. Farmers do not perceive the

7Appendix D.5.3 provides an extension with migration across counties and discusses implications for
the main policy analysis. The assumption that the intermediate is not produced domestically is motivated
by the import share of agricultural inputs being especially high in Latin America. The region has one of
the world’s highest import shares of fertilizers (76%) as well as machinery (68%), significantly higher than
North America, Europe, Asia, and only surpassed by Sub-Saharan Africa (Farrokhi and Pellegrina, 2023).
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firms as differentiated buyers, hence all firms buy the commodity at the same farm-gate

price pc
it. Apart from transporting commodities from an upstream source i to a down-

stream destination j, I allow firms to add value by transforming qc
it units of raw com-

modity c into a processed product k via a technology f (qc
it; k). For example, from a raw

commodity c = soybeans, a firm could produce k = soybean oil or k′=soybean meal. In

the case where the firm does not transform the commodity and trades it raw, I set k = c

so that the “product” is simply the raw commodity, and therefore f (qc
it; c) = qc

it.

The firm sells product k at the port closest to source county i, obtaining a FOB price

p̄k
it. Hence, transport costs from port to final destination are paid by final consumers: a

destination j consumer pays pk
ijt = p̄k

itτij, where τij is an iceberg trade cost. We can now

pose each firm’s maximization problem, taking demand of the other firms as given,

max
qc

it

p̄k
it f (qc

it; k)− pc
it (Q

c
it) qc

it,

where qc
it is an individual firm’s demand for raw commodity c, Qc

it is total demand, and

pc
it
(
Qc

it
)

is source i’s inverse supply equation. From the first order conditions, the farm-

gate price pc
it—which is the marginal cost from the intermediary’s point of view—is a

fraction µc
it < 1 of the marginal revenue the commodity generates for the intermediary,

pc
it︸︷︷︸

marginal cost

= µc
it︸︷︷︸

markdown

× p̄k
it f ′(qc

it; k)︸ ︷︷ ︸
marginal revenue

where µc
it ≡

(
1 +

∂ ln pc
it

∂ ln Qc
it

1
Nc

it

)−1

< 1. (4)

A farmer from source i obtains µc
it cents for every dollar the intermediary makes from

transforming commodity c into product k. I define µc
it, the ratio of the raw commodity’s

farm-gate price to its marginal revenue, as the markdown. Markdowns follow an inverse-

elasticity rule: farmers with inelastic supply are subject to wide markdowns (low µc
it).

The setup of the intermediary problem is purposefully simple, with the goal of obtaining

the smallest departure from the perfectly competitive setting typically assumed by the
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agricultural trade literature as well as parsimoniously nest it. In the limiting cases of

perfect competition (µc
it = 1) and raw commodity trade ( f (qc

it, c) = qc
it), the farm-gate

price is equal to the FOB price and the destination market price is simply the farm-gate

price adjusted by trade costs, i.e., pc
ijt = pc

itτij. I present model extensions with firm

heterogeneity and exit/entry in Appendix A.4.

Consumers. I follow the standard approach from the agricultural trade literature to

model consumers: a multi-level CES demand system with differentiation across products

and sources and bilateral iceberg trade costs τij. Each destination j has a representative

consumer with a three-level CES utility function. In the upper level, consumers substitute

between products indexed k (e.g., maize vs. wheat). In the middle level, they substitute

between source nations n of a given commodity (e.g., Brazilian maize vs. US maize).

In the lower level, they substitute between counties i within a nation (e.g., maize from

Northern vs. Southern Brazil).8 These preferences deliver the following demand by a

destination j consumer for product k from county i in nation n,

Ck
ijt = ak

ijt

(
pk

ijt

Pk
njt

)−ηl

ak
njt

(
Pk

njt

Pk
jt

)−ηm

ak
jt

(
Pk

jt

Pjt

)−ηu
Xjt

Pjt
∀i ∈ n, (5)

where ηl, ηm, and ηu are the lower, middle, and upper level elasticities of substitution, pk
ijt

is the lower level price, the a terms are preference shifters, Xjt is destination j expenditure

on agricultural goods (which is exogenous since this is a single-industry model) and the P

terms are price indices at each level of the demand system: Pk
njt ≡

(
∑i′∈n ak

i′ jt(pk
i′ jt)

1−ηl

) 1
1−ηl ,

Pk
jt ≡

(
∑n ak

njt(Pk
njt)

1−ηm
) 1

1−ηm , and Pjt ≡
(

∑c ak
jt(Pk

jt)
1−ηu

) 1
1−ηu . Given this is a standard

8Consumers in this model are interpreted as the first agents to receive the commodity at the destina-
tion’s entry point (typically food processing companies that transform commodities into retail food prod-
ucts). Hence, the different levels of the CES system should not be interpreted as the degree to which final
retail consumers literally differentiate as a matter of taste—indeed, it is unlikely they perceive significant
quality differences between maize from one county versus another. Instead, imperfect substitution in the
lower-level may reflect the degree to which there are frictions in sourcing from one county versus another
(e.g., unobserved switching costs across suppliers) even if the underlying product being sourced from both
counties is identical. This allows a finite substitution elasticity at the lower-level while allowing the inter-
pretation that consumers do not literally differentiate products across origins.
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CES consumer problem, its derivation is relegated to Appendix A.3.

4.3 Equilibrium

An equilibrium is a vector of farm-gate prices {pc
it}i,c and wages {wHit}i such that,

1. commodity supply in each county equals total demand: Qc
it(pc

it) = ∑j Cc
ijt(pk

ijt)τij

∀i, c, where pk
ijt =

pc
it

µc
it

τij
f ′(qc

it;k)
.9

2. agricultural labor supply in each county equals local labor demand across all com-

modities: sH|it (wHit, wHit)
(ψ−1)/ψ Hit = ∑c Hc

it
(
wHit, wMit, pc

it
)
.

I solve the equilibrium using an iterative algorithm that exploits the monotonicity of the

excess demand function in output and factor markets (see Appendix D.2 for details).

Emissions externality. I allow emissions to originate from two sources: i) land use change

(LUC) emissions from clearing forested land, and ii) non-LUC emissions that result from

the on-farm production process (e.g., fertilizer use, enteric methane from cattle). Non-

LUC emissions vary by commodity, hence switching between commodities affects total

emissions even if there is no deforestation. Because agricultural production releases many

types of greenhouse gases (CO2, CH4, etc.) I use CO2-equivalent units (CO2e) through-

out the analysis. Let ec,NLUC
i denote the non-LUC emissions intensity of commodity c

(tonnes of non-LUC CO2e per tonne of output). Let eLUC
i denote the LUC emissions in-

tensity of location i (CO2e stock per hectare of land). Values for ec,NLUC
i are taken from

the life cycle assessment literature (Poore and Nemecek, 2018) while values for eLUC
i are

from the carbon stock maps described in section 2. I denote emissions from LUC and

9When k is not a raw commodity, demand Ck
ijt from 5 is in units of processed product k, but supply Qc

it is
in units of raw commodity c. To define market clearing, we convert demand to raw commodity-equivalent
units, Cc

ijt. Let mck
it denote the units of product k produced with one unit of commodity c (mcc

it = 1) and let
K(c) be the set of products produced from c. Then, demand expressed in units of raw commodity c is,

Cc
ijt(pk

ijt) =

{
Ck

ijt(pk
ijt) if K(c) = {c},

∑k∈K(c) Ck
ijt(pk

ijt)/mck
it if K(c) = {c} ∪ {k, k + 1, ...},

(6)
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non-LUC sources in location i as ELUC
i and Ec,NLUC

i . The change in location i’s emissions

between two counterfactual equilibria is computed from changes in land and output as

∆Ei = ∆ELUC
i + ∑c ∆Ec,NLUC

i , where ∆ELUC
i = ∆LC

i eLUC
i and ∆Ec,NLUC

i = ∆Qc
i ec,NLUC

i .

The dollar-value of emissions is obtained by multiplying emissions quantities by the so-

cial cost of carbon (SCC), for which I use a baseline value of 50 USD/t of CO2e.

5 Estimation

5.1 Supply elasticities

Within-nest substitution elasticities. To clarify the variation I use to estimate the supply-

side parameters, consider the odds ratio between two land use choices c and c′ ∈ C,

ln

(
πc

it

πc′
it

)
=

θ

λ
ln

(
rc

it

rc′
it

)
=

θ

λ
ln

 (pc
it
) 1

γc
L zc

it(
pc′

it
) 1

γc′
L zc′

it

+ ucc′
it , (7)

where the second equality is obtained by substituting the expression for rc
it from section

4.1.2. The first term on the right of 7 is a combination of objects that are observable to the

econometrician: farm-gate prices pc
it, land intensities γc

L, and the observable component of

land productivity zc
it (yields). The second term is a combination of unobservables defined

as ucc′
it ≡ θ

λ

[
ln
(

ζc
it

ζc′
it

)
+ ln

(
wγcc′

HL
Hit wγcc′

ML
Mit

)]
where γcc′

HL ≡ −γc
H

γc
L
+

γc′
H

γc′
L

and γcc′
ML ≡ −γc

M
γc

L
+

γc′
M

γc′
L

.

This term contains unobservable shocks to land productivity ζc
it and unobserved factor

prices wHit, wMit. Hence, ucc′
it is a combination of unobservable supply shocks to c relative

to c′. OLS estimates of 7 are therefore subject to simultaneity bias, for which we need a

demand shifter as an instrument.

The parameter of interest in 7 is θ
λ : the elasticity of substitution between commodities

within the agricultural nest. This elasticity is large when productivity dispersion across

fields goes to zero (θ → ∞) or when productivity is perfectly correlated across commodi-

ties (λ → 0). When θ → ∞ there is no field heterogeneity remaining: all fields are on
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the margin when prices change so the county-level within-nest elasticity is high. When

λ → 0 the idiosyncratic shocks become perfectly correlated within nest C, which lowers

the variance of their differences, εc
i(ω) − εc′

i (ω). Because these differences drive the id-

iosyncratic component of choices, their lower variance implies less heterogeneity for the

within-nest choice margin and thus a high within-nest elasticity.

Across-nest substitution elasticities. Consider the odds ratio between nest C and N ,

ln

(
πC

it
πN

it

)
= λ ln

(
PC

it

)
+ uN

it , with PC
it ≡ ∑

c∈C
(rc

it)
θ
λ and uN

it ≡ −θ ln
(

AN
it

)
. (8)

Note ln PC
it is the inclusive value of the agricultural nest and uN

it is an unobservable sup-

ply shifter of agricultural land relative to forested land, which maps to the (unobserved)

payoff to natural use AN
it . The parameter of interest is λ, the substitution elasticity across

nests, i.e., the deforestation elasticity. As λ → 0 the within-nest heterogeneity falls, as

explained in the previous paragraph. Therefore, fields become relatively more heteroge-

neous in the across-nest margin, leading to a low across-nest elasticity. Given θ
λ from 7,

we can construct the inclusive value in 8 and λ is identified (see Appendix C.2 for details).

Estimation sample. I use county-level data from agricultural censuses of Brazil (1995,

2006, 2017) and Argentina (2002, 2008, 2018). The commodities considered are beef (pas-

ture), soybean, maize, wheat, rice, sunflower, sugarcane. Beef, maize, and soybean repre-

sent 85% of all agricultural land, while the other commodities are jointly less than 10%.

Factor shares. I take factor shares from the literature since they have been estimated for

South American countries (Sotelo, 2020; Pellegrina, 2022). Land intensities for major crops

(maize, soybean, wheat) range from 0.4-0.6, while values for beef are between 0.5-0.7.

Instruments. OLS estimates of 7 will be biased towards zero due to simultaneity bias,

because the unobservable supply shocks will be correlated with relative land shares and

relative payoffs. The appropriate instrument is a demand shifter varying at the county-

year it and commodity-pair cc′ level. To construct such an instrument, I first define a
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demand shifter for commodity c as IVc
it = ∑j sc

ijd
c
jt, where sc

ij is the share of commodity c

output from county i that historically goes to destination j and dc
jt is a time-varying mea-

sure of demand conditions in destination j.10 Intuitively, if demand conditions for crop c

increase in destination j, the counties that historically supplied j are more exposed and re-

ceive a larger demand shock. The relevance of the instrument relies on persistence in the

sourcing relationships between downstream consumer markets and upstream producers,

as mediated by the agribusiness firms, which is ultimately confirmed via the first-stage

F-statistic in the results. Finally, I define a relative demand shifter between two commodi-

ties c and c′ as IVcc′
it ≡ IVc

it/IVc′
it . The identifying assumption is that the county’s relative

exposure is uncorrelated with changes in the error term, ∆ucc′
it , whereas correlation with

levels ucc′
it is allowed. We also need an instrument for equation 8 for the same reasons as for

equation 7: if the unobserved payoff to natural use increases, then the commodity nest’s

share would fall and its price index PC
it would increase, biasing the estimate of λ towards

zero. We now need a shifter of demand for agriculture overall, which we construct by

aggregating the demand shifters across all commodities, IVC
it ≡ ∑c∈C IVc

it.

Frontier region definition. I allow heterogeneity in substitution parameters across “fron-

tier” and “core” agricultural regions. I do this to allow my land use change estimates

to be comparable to the subset of studies focusing exclusively on the Amazon region.

Hence, I define the frontier region for Brazil as the government-designated area of “Ama-

zonia Legal”. The definition of core region for Argentina is based on the “zona núcleo”

designation from agricultural censuses, which consists of the “Pampeana” region.

Results. The upper panel of Table 3 shows OLS and IV estimates for θ
λ , the substitution

elasticity between commodities. The lower panel shows estimates for λ, the deforestation

elasticity. Note the within-nest estimates are in line with values from the agricultural

10For the construction of the instruments, the destination markets are all those in the TRASE data, which
consists of over 190 countries from all continents, which are aggregated into 7 trading blocs: Asia, Europe,
Africa, Middle East, Central America, South America, and North America. I use destination j’s imports
from every nation except Argentina and Brazil as the demand measure dc

jt, thus purging away supply-side
effects in Argentina and Brazil that directly affect the imports of j.
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trade literature, which typically finds substitution elasticities across commodities ranging

between 1.5-4 (Costinot et al., 2016; Sotelo, 2020; Pellegrina, 2022). The last two columns

add interactions with a frontier region indicator to allow for spatial heterogeneity: the

negative sign suggests that farmers in frontier regions are less responsive to price changes

along both within- and across-nest margins.

Table 3: Supply-side substitution parameters.

Within-nest substitution elasticity OLS IV OLS IV
θ
λ 0.201*** 2.220*** 0.164*** 2.219***

(0.034) (0.144) (0.035) (0.143)
θ
λ × frontier region 0.725*** -1.106***

(0.123) (0.180)

Time FE ✓ ✓ ✓ ✓
Location FE ✓ ✓ ✓ ✓
Observations 7,008 7,008 7,008 7,008
KP-Wald First stage F-statistic 171.2 176.6

Across-nest substitution elasticity OLS IV OLS IV

λ 0.052*** 0.279*** 0.052*** 0.281***
(0.009) (0.068) (0.010) (0.069)

λ × frontier region 0.002 -0.229**
(0.031) (0.076)

Time FE ✓ ✓ ✓ ✓
Location FE ✓ ✓ ✓ ✓
Observations 9,255 9,255 9,255 9,255
KP-Wald First stage F-statistic 143.4 151.4

Notes: table shows estimates for equations 7-8 in upper and lower panel, respectively. SE clustered at county-level.

While I cannot fully disentangle the micro-foundations driving the regional hetero-

geneity, most mechanisms are likely related to frontier regions being less developed over-

all. Farmers in these regions may find it harder to switch between commodities due to

poorly functioning input markets (machinery, credit), thus rationalizing lower within-

nest substitution. The lower across-nest response to commodity prices is consistent with

deforestation in frontier areas being driven relatively more by non-market forces, most

notably land grabbing incentives.
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5.2 Markdowns

As indicated by 4, markdowns µc
it are a function of the price-elasticity of supply and

the number of firms sourcing from each location. Hence, we can compute markdowns

before imposing the demand side of the model.11 Figure 3-A shows the geography of

markdowns for the beef cattle sector, the main driver of land use. Average markdowns

are 0.74 for beef, and 0.86 and 0.87 for maize and soybeans. Markdowns are wider in

frontier regions where supply is least elastic (Brazil’s north, Argentina’s west), likely due

to the reasons explained in the preceding section.

Figure 3: Spatial distribution of markdowns and correlation with local observables.
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Notes: all plots are constructed from county-level markdown estimates, market access terms, and carbon
intensities. Markdowns are computed using 4 and 9 and averaged over time. Market access is constructed
as ∑j sjd−1

ij where dij is distance between county i-hub j and sj is hub trade volume. Carbon intensity
is measured as tonnes carbon/hectare. For the scatterplot, curves are fitted polynomials of county-level
observations and markers are binned scatter plots. All results are for upstream beef markets. Additional
results for soybean and maize are displayed in Appendix C.3.2.

Panels B and C of Figure 3 show frontier regions are indeed more remote (as measured

by market access) and more emissions-intense (as measured by the carbon density of

11The price-elasticity of supply is derived from 3 and is computed with the following objects: substitu-
tion parameters (θ, λ), land intensity parameters (γc

L), and observed land use shares (πc|C
it ,πC

it) as,

∂ ln Qc
it

∂ ln pc
it

=

[(
θ

λ
− 1
)(

1 − π
c|C
it

)
+ (θ − 1)πc|C

it

(
1 − πC

it

)] 1
γc

L
+

(
1

γc
L
− 1
)

. (9)
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land). Most importantly, the positive correlation between the two market distortions—

market power and the environmental externality—will play a significant role in the policy

analysis of section 6. Finally, in Appendix C.3.3 I validate the model-implied markdowns

against external accounting-based markdowns. The key takeaway is that model-implied

markdowns are positively correlated across space with external markdowns. If external

markdowns are to some degree indicative of market power, then the fact that the model-

implied markdowns move in the same direction across space is reassuring.

5.3 Demand elasticities

First, the lower-level elasticity ηl is identified from expenditure variation across source

origins i within a source nation n:

ln

(
Xc

ijt

Xc
njt

)
= (1 − ηl) ln

(
pc

ijt

)
+ λc

njt + εc
ijt ∀i ∈ n, (10)

where Xc
ijt is destination j’s expenditure on commodity c from county i, Xc

njt = ∑i′∈n Xc
i′ jt,

λc
njt ≡ − ln

(
∑i′∈n ac

i′ jt(pc
i′ jt)

1−ηl

)
is a commodity-source nation-destination-time fixed ef-

fect and εc
ijt ≡ ln

(
ac

ijt

)
. Because 10 is a demand equation, simultaneity bias arises when

estimating via OLS. Therefore, I instrument for price with a supply shifter which I con-

struct as IVc
ijt ≡ sc

ij × bnt, where bnt is a weather shock at the origin nation (measured as

deviations from historical average) and sc
ij is the share of origin i production going to des-

tination j in the first year of the sample. The instrument’s relevance condition is straight-

forward: given a negative weather shock at the origin, the size of the supply shock faced

by destination j depends on how exposed it is to i through its historic trading relation-

ship. The exclusion restriction is that the origin-destination shares sc
ij are not predictive of

changes in unobservable demand shocks. This allows an origin i that historically exports

most of its output to j to consistently experience large demand shocks from j, but not to

experience systematic changes in such shocks over time. The middle-level elasticity ηm is
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identified from expenditure variation across nations,

ln

(
Xc

njt

Xc
jt

)
= (1 − ηm) ln

(
Pc

njt

)
+ λc

jt + εc
njt, (11)

where Xc
jt is destination j’s total expenditure on commodity c across all source nations.

The term λc
jt ≡ − ln

(
∑n′ ac

n′ jt(Pc
n′ jt)

1−ηm
)

is a commodity-destination-time fixed effect

and εc
njt ≡ ln

(
ac

njt

)
. To construct the price indices in 11 I use the residuals from 10, i.e.,

Pc
njt ≡

(
∑i∈n âc

ijt

(
pc

ijt

)1−ηl
) 1

1−ηl
where âc

ijt = exp
(

ε̂c
ijt

)
. Since 11 is a demand equation

just like 10, the simultaneity problem and its solution are the same, with the only differ-

ence being the lower geographic resolution (origin locations are now nations instead of

counties). Hence, I again instrument for price by constructing a supply shifter, however at

the origin nation level. Finally, the upper-level elasticity ηu is identified from expenditure

variation across commodities,

ln

(
Xc

jt

Xjt

)
= (1 − ηu) ln

(
Pc

jt

)
+ λjt + εc

jt, (12)

where Xjt is destination j’s total expenditure on agricultural imports. To construct the

price indices in 12 I use the residuals from 11, i.e, Pc
jt ≡

(
∑n âc

njt

(
Pc

njt

)1−ηm
) 1

1−ηm
where

âc
njt = exp

(
ε̂c

njt

)
. Furthermore, λjt ≡ − ln

(
∑c′ ac′

jt

(
Pc′

jt

)1−ηu
)

is a destination-time fixed

effect and âc
jt = exp

(
εc

jt

)
. The required instrument is now a supply shifter varying across

commodities, which I construct as supply shocks at the destination-commodity level as

IVc
jt = ∑n sc

njbnt, where sc
nj is the share of destination j imports coming from an origin

nation n in a baseline year and bnt is the origin nation-level weather shock.

Results. Table 4 shows the substitution elasticity estimates for each level of the demand

system. At all levels, IV estimates are larger in absolute value than OLS estimates, con-

sistent with simultaneity bias. Substitutability is higher across commodity sources than

across commodities, and across counties than across nations. At the nation and commod-
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ity levels, the implied CES parameter values are ηm = 5.99 and ηu = 5.11. These mag-

nitudes are similar to those from related literature (Costinot et al., 2016), with deviations

likely driven by differences in the set of commodities and countries.

Table 4: Demand substitution elasticities.

Dependent variable: log (expenditure share)

Lower level Middle level Upper level
(across counties) (across nations) (across commodities)

OLS IV OLS IV OLS IV

log (price) 1.266*** -8.641*** -1.478*** -4.992*** -1.030*** -4.107**
(0.020) (0.691) (0.079) (0.772) (0.163) (1.173)

KP-Wald First stage F-statistic 257 32 9
Observations 409,558 409,558 38,272 38,272 4,059 4,059

Notes: Lower, middle, and upper specifications include origin nation-destination-year-commodity fixed
effects, destination-year-commodity fixed effects, and destination-year fixed effects, respectively. SE clus-
tered by origin-destination (for lower and middle levels) or destination (for upper level).

5.3.1 Additional parameters and simulation details

The remaining parameters are either observed in the data (land endowment Li, popu-

lation Hi, non-agricultural wages wHit, intermediate input prices wMt), taken from the

literature (factor shares γL, γH, γM, across-sector labor supply elasticity ψ), or calibrated

(unobservable land productivity ζc
it, trade costs τij). Implementation details for these pa-

rameters, as well as for equilibrium simulations, can be found in Appendix D.1.

6 Policy counterfactuals

The counterfactual analysis proceeds in three steps. Section 6.1 evaluates three stylized

policies often proposed in the public debate in order to highlight the regulatory trade-

off between targeting and scale. Section 6.2 re-runs the counterfactuals under different

conduct assumptions to show how the trade-off is shaped by competition. Section 6.3

compares all policies in a full welfare analysis where the first-best is used as a benchmark.
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6.1 The policy trade-off between targeting and scale

6.1.1 Downstream taxes: large scale but poor upstream targeting

This first policy counterfactual is a uniform downstream tax for each commodity (based

on each commodity’s average emissions footprint across upstream origins).12 The moti-

vation for this exercise is based on the notion that a commodity’s upstream origin cannot

be perfectly traced. Hence, this stylized counterfactual captures how well a regulator can

do when constrained to commodity-specific but spatially-uniform downstream taxes.

Figure 4-A shows the impact of the downstream tax on upstream production (for the

beef sector, the main driver of total emissions).13 The figure plots the relationship between

an upstream location’s emissions intensity and its change in production: a negative rela-

tionship implies better targeting. First, the average impact on upstream production is

large even when using a modest SCC of 50 USD/t CO2e for the downstream tax. This

is consistent with existing work, which finds that carbon taxes at even lower SCC values

would nearly eliminate all agricultural land in the Amazon (Souza-Rodrigues, 2019). Sec-

ond, while the policy has a large impact on average, it is bluntly targeted: output drops

least in frontier regions where emissions intensities are highest. Mistargeting occurs be-

cause (i) supply is less elastic in frontier regions, and (ii) pass-through is lower in these

regions because of the stronger degree of agribusiness market power. While this spatial

mistargeting result holds regardless of conduct assumptions since it relies solely on the

12I implement the policy as a downstream retail tax (for goods consumed domestically) combined with
a downstream export tax (on exported goods). Technically, it is implemented by setting an output tax
tc
ij = tc = SCC × Ec ∀i, j, c where Ec is the average tonnes of emissions per tonne of output for commodity

c. The reason for having both a domestic and export tax is to shut down standard inefficiencies from
consumption-side leakage: without the domestic tax, there would be consumption leakage to unregulated
domestic consumers. Hence, fully regulating all consumer markets isolates inefficiencies from domestic
mistargeting, which are the main focus of the paper. Appendix D.5.2 shows a version of this counterfactual
where only a foreign trade partner implements this tax, which delivers similar issues of upstream targeting
while also introducing consumption-side leakage (to domestic and foreign unregulated consumer markets).

13I focus on beef because it accounts for 70% of all agricultural land and its emissions footprint is orders
of magnitude above that of crops. As a result, it is the main driver of aggregate emissions. I account for
emissions from crops when discussing aggregate emissions in the welfare analysis of section 6.3.
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spatial pattern of supply elasticities, market power exacerbates it by eroding pass-through

most in locations where the environmental cost is highest. Beyond the limited effective-

ness of the downstream tax, I also analyze its distributional effects. In Appendix D.5.1

I show that farmer income is implicitly taxed at a higher rate in poorer regions, i.e., the

policy is regressive across space. Hence, apart from increasing food prices for consumers,

the downstream tax has an extra layer of regressivity on the supply side.

Figure 4: Targeting performance of downstream and upstream regulation.
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Notes: scatter plots are constructed from upstream outcomes averaged to the state-level and for the beef
sector. Marker sizes are proportional to baseline production. Lines indicate the fit of a linear model to the
markers, with observations size-weighted by baseline production. The horizontal axis reports the emis-
sions intensity of each upstream location (tonnes of CO2e/tonne of output). The vertical axes report the
percentage point change in upstream output as a result of each policy. Outcomes are reported for the de-
fault conduct assumption of imperfect competition and perfect competition.

6.1.2 Upstream regulation: effective upstream targeting but low scale

Recall the AN
i term in the landowner choice problem is a residual: it captures any in-

centives farmers have to deforest that are not explained by changes in commodity prices.

Hence, a change in AN
i is consistent with any policy that is enforced upstream and changes

incentives to deforest directly, rather than indirectly via commodity prices. Technically,
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I implement this section’s policy as a forest subsidy that increases the AN
i term for up-

stream locations in the top decile of emissions intensity. This differs from the previous

downstream taxes in that it is directly implemented upstream on farmers. To ensure

farmers don’t just claim the subsidy without re-foresting, I assume the targeted benefits

of this policy come at an enforcement cost that limits its scalability.14 Figure 4-B plots the

policy’s impact on upstream production and its spatial correlation with emissions inten-

sity. The contrasting slopes between panels A and B of Figure 4 indicate the upstream

policy is well-targeted while the downstream tax is not. More subtly, the outcomes deliv-

ered by the upstream policy are similar with or without market power, which is not true

for the downstream tax. Because of its direct implementation, the upstream policy avoids

the pass-through distortions that market power introduces for the downstream tax.

6.1.3 Downstream taxes with certification: improving targeting while preserving scale

The previous two policies were at two extremes in terms of targeting assumptions: the

upstream regulation was perfectly targeted but at small scale, while the downstream tax

operated at large scale but without any targeting. We now consider an intermediate pol-

icy: a downstream tax that preserves scale while allowing coarse targeting at the macro-

region level. Given there are only 10 of these large macro-regions, such a policy would

only need to certify commodities by their coarse macro-region origin, rather than their

precise county origin.15 How well this coarse policy performs relative to finer county-

level targeting depends on how much of the variation in market power and emissions

intensities is across regions relative to within.

14The enforcement cost depends on the size of the conservation zone. For the purpose of this stylized
counterfactual, the enforcement cost is thus contingent on the conservation zone being defined as counties
in the top 10% of emissions intensity (which is based on typically observed coverage rates for priority-zone
policies in this setting). The subsidy rate is set based on the average carbon intensity of land: a landowner
in location i is paid SCC × eLUC

i dollars per hectare of forest, where eLUC
i is the location’s CO2e per hectare

of land and SCC is the social cost of carbon.
15I implement this with an output tax tc

ij = tc
r(i) = SCC × Ec

r(i) ∀i, j, c, where Ec
r(i) is average tonnes

of emissions per tonne of output in the macro-region r that county i belongs to. Hence, the tax varies by
commodity and macro-region, but not within a macro-region.
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Figure 5 plots the correlation between an upstream location’s emissions intensity and

its counterfactual change in production for (i) the uniform downstream tax, (ii) a macro-

region targeted tax, and (iii) a county-level targeted tax. Macro-region targeting flips (and

corrects) the correlation between emissions intensity and abatement. While county-level

targeting naturally performs even better, the key takeaway is that even coarse macro-

region certification makes a qualitative difference for targeting.

Figure 5: Coarse targeting flips the correlation between CO2e intensity and abatement.
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Notes: all plots are constructed from county-level outcomes for the beef sector. Markers are binned scatter
plots and lines indicate fit to county-level outcomes. Horizontal axes report the emissions intensity of
each upstream location (tonnes of CO2e/tonne of output). Vertical axes report percentage point change in
upstream output as a result of each policy. From left to right, results are shown for downstream taxes that
are (i) untargeted, (ii) coarsely targeted by upstream region, and (iii) finely targeted by upstream county. In
all figures, outcomes are reported for the default conduct assumption of imperfect competition.

6.2 The role of competition for the policy trade-off

The previous section suggests that when choosing among two policy alternatives, it is

natural to compare the abatement benefits each tool delivers relative to its implementa-

tion cost. Let ∆EU and ∆ED denote the emissions reductions (in tonnes of CO2e) achieved

by the upstream regulation and the downstream tax, respectively. Moreover, define T ≡

∆EU − ∆ED as the “targeting premium”: the additional emissions reductions achieved by

the upstream tool (targeted but small scale) relative to the downstream tool (large scale

but non-targeted). Finally, let C denote the additional enforcement cost of the upstream

tool relative to the downstream one. A regulator with the goal of maximizing abatement
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at minimal enforcement cost chooses the upstream tool if its dollar value of emissions

reductions, net of additional enforcement costs, exceeds that of the downstream tool,

SCC × ∆EU − C > SCC × ∆ED =⇒ C < SCC × T . (13)

The right hand side of 13 says the regulator chooses the targeted tool if its additional en-

forcement cost (C) is below a certain threshold: the dollar-value of the targeting premium,

SCC × T . SCC is observable given it’s a parameter that we incorporate exogenously into

our analysis, and the targeting premium T is also observable because it’s an outcome

of the model simulations. Hence, while we do not observe enforcement costs C, we can

compute an upper bound under which small-scale upstream regulation is preferred to a

large-scale downstream tax.

Note T depends on model primitives such as the correlation between emissions inten-

sity and market power: T is higher when this correlation is positive because that’s when

pass-through is lower to emissions-intense locations, worsening the downstream tax’s ef-

fectiveness relative to upstream regulation. To illustrate this point, I use the model to

compute T for varying degrees of spatial correlation, which involves the following steps:

1. Let the baseline spatial distribution of carbon density be the one observed in the

data, denoted by a mean of µ and a standard deviation of σ.

2. Simulate the uniform downstream tax from section 6.1.1. Denote the emissions re-

ductions it attains as ∆ED(σ), given it depends on the carbon-density dispersion σ.

Simulate the upstream policy from section 6.1.2 and denote its emissions reductions

as ∆EU(σ). Finally, compute the targeting premium, T (σ) ≡ ∆EU(σ)− ∆ED(σ).

3. Construct a mean-preserving spread (MPS) of the baseline distribution of carbon

density: it also has mean µ but an alternative standard deviation denoted σ̃. Re-

peat step 2, computing the targeting premium under the MPS, T (σ̃) ≡ ∆EU(σ̃)−

∆ED(σ̃). Repeat for various MPS, i.e., for various values of σ̃.
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Figure 6-A shows T (σ̃) is increasing in σ̃: the more heterogeneity in emissions in-

tensity, the higher the value of targeting, and therefore the higher the enforcement cost

society is willing to pay for targeting. Moreover, this value is higher when there is market

power—upstream targeting is valuable not just because of the standard efficiency argu-

ment that holds under any kind of market structure, but also because it avoids the pass-

through distortions that market power introduces for the downstream policy. Impor-

tantly, if the correlation between emissions intensity and market power had been of the

opposite sign, then market power would have improved targeting by raising pass-through

to emissions-intense locations (i.e., the solid line in Figure 6 would be below the dashed

one). Thus, market power may worsen or improve an environmental policy’s targeting

depending on the direction in which it distorts pass-though, which in turns depends on

how industry primitives shape the aforementioned correlation.

Figure 6: Interaction between emissions heterogeneity, market structure, and targeting.
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Notes: the vertical axis shows the targeting premium T (σ̃) for a given degree of emissions dispersion σ̃.
The left panel reports the targeting premium in units of CO2e, while the right panel reports its dollar value
under a SCC of 50 USD/tonne. The horizontal axis in both figures shows the deviation of the counterfactual
dispersion σ̃ from the observed degree of dispersion σ, reported as the ratio σ̃/σ.

These qualitative results add nuance to the classic intuition that by depressing quanti-

ties “the monopolist is the conservationist’s friend” (Solow, 1974). While we can confirm

this pro-environment intuition of market power by comparing the laissez-faire equilib-
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rium with and without market power—indeed, forest cover is 25% higher when market

power is present—the role of market power for the transmission of environmental policy

is more ambiguous. In this setting, the empirical object that resolves this ambiguity is the

sign of the spatial correlation between market power and the environmental externality.

6.3 Performance of feasible second-best policies relative to first-best

The previous section analyzed how emissions heterogeneity and market power interact to

shape the trade-off between targeting and scale. To isolate core mechanisms, we focused

on emissions reductions (net of enforcement costs) as the main policy goal. While this

approach resonates with the notion of regulators being entrusted with narrow mandates

rather than total welfare maximization, this section complements the preceding analysis

by considering a broader welfare metric that accounts for producer and consumers sur-

plus, as well as the government’s fiscal balance. Moreover, I benchmark results against

the first-best allocation, which I introduce next.

6.3.1 First-best benchmark

The equilibrium that results from a perfectly competitive setting with perfectly targeted

Pigouvian taxes is the first-best efficient benchmark—there is no market power distor-

tion and environmental damages are fully internalized. To characterize this allocation,

I simulate the equilibrium under perfectly competitive conduct and with the following

Pigouvian tax per unit of output and subsidy per unit of forested land:

tc∗
i = SCC × ec,NLUC

i and sN∗
i = SCC × eLUC

i , (14)

where ec,NLUC
i is CO2e on-farm emissions per tonne of output (e.g., emissions from cattle

methane) and eLUC
i is CO2e emissions per hectare of forested land. The output tax targets

on-farm emissions (which vary by commodity) while the forest subsidy targets land use
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change emissions (independent of commodity). We label the allocation resulting from

this equilibrium with superscript ∗. The Pigouvian output taxes derived in 14 will not

decentralize the first best if we impose imperfectly competitive conduct instead. Hence,

they need to be adjusted to account for market power. Let tc
i be the output tax that de-

centralizes the first-best in the imperfectly competitive case. Appendix A.5 shows the

expression for such a tax is tc
i = tc∗

i − pc∗
i [1− µc

i (Lc∗
i )] where µc

i (Lc∗
i ) < 1 is the markdown

evaluated at the first-best land allocation Lc∗
i . The takeaway is tc

i < tc∗
i : the output tax is

lower than under perfect competition because market power is already pushing quanti-

ties part of the way towards the first-best. This is the classic insight from Buchanan (1969)

on optimally taxing a polluting monopolist.

6.3.2 Welfare analysis of second-best policies

I follow standard approaches from single-industry empirical IO studies by constructing

welfare as the sum of its constituent parts (Fowlie et al., 2016; Hsiao, 2021). I define so-

cial welfare W as the sum of consumer surplus (CS), producer surplus (PS), government

surplus (G) and emissions (E) evaluated at the SCC, i.e., W = CS + PS + G − SCC × E.

Details on welfare accounting for each component are in Appendix D.4. Table 5 reports

the welfare impact of each policy, as percentage point changes from the laissez-faire as

well as share of the first-best efficiency gains.

First, within the category of downstream domestic taxes, emissions declines are larger

the more finely targeted the policy is. Producer and consumer surplus declines are also

smaller the more targeted the tax is. Both forces contribute to the larger welfare gains at-

tained by finer targeting. In the case of unilateral tariffs by foreign trade partners, impacts

on all welfare components are small due to consumption-side leakage. Moreover, surplus

for South American consumers increases while that of foreign consumers declines. Sec-

ond, moving on to upstream policies, the limited-scale but targeted forest subsidy deliv-

ers more emissions abatement than the untargeted downstream tax. However, once we

35



Table 5: Decomposition of welfare impacts.

Change relative to laissez-faire % of first-best
equilibrium (percentage points) efficiency gains

∆ E ∆ PS ∆ CS ∆ CSSA ∆ CSROW ∆ E ∆ W

Downstream domestic taxes

– Untargeted (section 6.1.1) -26.88 -21.49 -28.07 -28.55 -27.57 29.27 26.40
– Region-targeted (section 6.1.3) -30.48 -20.74 -26.36 -27.12 -25.60 33.20 30.85
– County-targeted (section 6.1.3) -34.47 -18.96 -23.43 -24.26 -22.59 37.54 35.99

Downstream foreign taxes

– Unilateral EU tariff (appendix D.5.2) -2.92 -2.44 -5.67 2.36 -13.80 3.18 2.44

Upstream policies

– Forest subsidy (section 6.1.2) -28.09 354.60 -0.10 -0.10 -0.10 30.60 32.55
– First best (section 6.3.1) -91.81 853.99 -37.62 -38.09 -37.14 100.00 100.00

Notes: details on how each welfare component is computed are in Appendix D.4. CSSA refers to consumer
surplus of South America and CSROW to that of foreign consumers. The first five columns display percent-
age point changes between the policy counterfactual and the laissez-faire. The last two columns display the
changes in emissions and overall welfare, as a percent of the changes delivered by the first-best. Percentage
point changes for government surplus are not displayed because the baseline level for G in the laissez-faire
is zero (however, government surplus does indeed enter ∆W).

allow for some targeting of the downstream tax, even as coarsely as by region, the up-

stream policy is outperformed in abatement terms. The forest subsidy generates smaller

declines in consumer surplus than the downstream tax though, because it only targets

production for farmers in the most emissions-intense areas. Producers also gain signif-

icantly because they are being paid to keep their land forested. Despite the transfer to

producers, aggregate welfare gains are modest because the forest subsidy implies a large

fiscal cost. Finally, the first best welfare gains come from large reductions in emissions

damages as well as increases in producer surplus because they are subsidized to keep

land forested. Both forces outweigh the decline in consumer surplus and the net fiscal

cost of the forest subsidies. Overall, the range of second-best policies I consider attain

between 29-38% of first-best emissions reductions and 26-36% of welfare gains.
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7 Final remarks

Environmental externalities often co-exist with other distortions in real world markets.

In this paper, I study how the transmission of environmental policy occurs along a sup-

ply chain, in particular when pre-existing distortions lie between the stage where emis-

sions are generated and the stage where regulation is feasible. I do so in the empirical

context of an agricultural supply chain, where the link between upstream farmers and

downstream consumers is intermediated by a concentrated layer of agribusiness inter-

mediaries with plausible monopsony power. While policy interventions are more feasi-

bly implemented at the supply chain’s bottleneck, I show that the impact on the upstream

producers making the environmentally-relevant decisions can be poorly targeted, and es-

pecially so when market power is present. Concretely, if the upstream producers most

subject to market power are also the most emissions-intense, then the Pigouvian signal of

a downstream tax is eroded most where social cost is highest.

More generally, market power can be theoretically ambiguous for the transmission of

environmental policy, and this paper proposes a specific mechanism—differential pass-

through–that microfounds this ambiguity. Moreover, the empirical object that resolves

this theoretical ambiguity is the correlation between market power and the environmental

externality. In this setting, market power worsens targeting because the correlation is

positive. In other settings the correlation could be negative, in which case market power

would improve targeting by raising Pigouvian pass-through where social cost is highest.

Understanding how specific industries vary in the primitives shaping such correlations

can help reveal general insights about the efficiency of corrective policies.
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