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A.1 Institutional background

A.1.1 Policy changes in the Amsterdam real estate market

Change in Housing Point System (2011): Classification of a unit as social is deter-
mined by an annually updated national point system, with units below 143 points
being classified as social. Until 2011, the number of points was based solely on the
unit’s physical attributes. In response to rental supply scarcity, the Dutch govern-
ment designated 140 areas nationwide as having a “housing shortage” and imple-
mented a 25-point increase for all rental units in these areas. As a consequence,
this policy reduced the supply of social housing units and increased the supply
of private rental units. In Amsterdam, it is estimated that 28,000 out of a total of
200,000 social housing units would shift to the private market (van Perlo, 2011).

Decrease in Default Lease Duration (2015): While landlords could historically
terminate a rental contract based on certain legal grounds, the contract duration
was by default “indefinite.” The only way a landlord could increase rents was
with a new lease—to an existing or to a new renter in the private market—or to
index the initial lease to inflation. This left little room for landlords to increase
rents within a lease. In 2015, a new law, “Wet Doorstroming Huurmarkt 2015”,
changed the standard duration of new contracts from indefinite to two years, with
options to contract on even shorter duration (Koninkrijksrelaties, 2015). After the
initial two years, the landlord had the option to offer the current tenant a new lease
with a new price, but which had to be of indefinite duration. As a consequence,
landlords had the incentive to find new tenants willing to pay higher prices for
an initial two years, rather than renew an existing tenant’s contract indefinitely
(Koninkrijksrelaties, 2021), thus increasing private rental market supply.

Regulation of Vacation Rental Properties (2017): Due to the expansion of short-
term rentals and tourism, the city of Amsterdam implemented strict regulations

1University of Chicago Booth School of Business and NBER. E-mail: milena.almagro@chicagobooth.edu
2University of Chicago Booth School of Business. E-mail: tomasdi@uchicago.edu

1

mailto:milena.almagro@chicagobooth.edu
mailto:tomasdi@uchicago.edu


on the hospitality sector. First, the policy limited the construction of new hotels
(Botman, 2021). Second, the city also required landlords to report all units they
rented out as vacation rentals. Third, the city also set a maximum number of nights
a property could be rented per year, initially set to sixty nights at the end of 2017
and tightened to only thirty nights in 2019. Together, these laws aimed to lower the
incentives to rent short-term to tourists, and thus increase rental supply for locals.

A.2 Data

A.2.1 Residential histories and household characteristics

First, we construct an annual panel of location choices starting in 1995 using the
registry (cadaster) data. The cadaster gives us a history of addresses for all indi-
viduals in the Netherlands from 1995-2020. For every individual, we pick their
modal address each year. In terms of demographics, we keep individuals between
18-70 years old. We also observe country of origin of the household head, which
we classify into four broad categories: Dutch, Dutch Indies, Western (OECD), and
Non-Western. With regards to skill, we observe the graduation date and degree
type for everyone completing a high school degree and beyond for 1999-2020. We
classify households according to the highest achieved level of education into low,
medium, and high skill for those with high school (VMBO) or less, vocation or
selective secondary education (HAVO, VWO, MBO), or college and more (HBO,
WO), respectively. Finally, we observe household-level tax returns for 2008-2020
with information on: gross and after-tax income, number of household members,
an imputed measure of income per person, and household composition categories.
The household composition data allows us to see whether the household has chil-
dren. For our dynamic location choice estimation sample, we focus on heads of
household as identified by the tax data. We keep those households who have lived
at least one year in Amsterdam since 1995, household head’s age is between 18-70
years, and have at least one year with reported tax return information.

A.2.2 Housing characteristics, tax appraisal values, and transaction prices

First, for every housing unit we observe the year it was built, the floor area in
square meters, a categorical variable about the life stage of the property, and the
usage category for 2011-2020. There are 11 usage types: residential, sport, events,
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incarceration, healthcare, industrial, office, education, retail, and other. There are
six types of life-stage categories: constructed, not constructed, in process of con-
struction, in use, demolished, and not in use. We also observe any changes to
these characteristics. For example, we can see if a unit previously classified as
residential is now considered commercial. With these transitions, we see that vir-
tually no residential units convert to another usage type such as commercial and
vice-versa. Given this segmentation, we only keep housing units classified as resi-
dential. Moreover, these data inform us about the extent of new construction. On
average, new units make 1.2% of the residential housing stock on a yearly basis.

Table A1: Correlation between tax appraisal and transaction values.

Transaction Value

WOZ Value 1.069 (0.001)
Constant -1,798.689 (441.983)

R2 0.855
N 128387

Note: Table shows regression coefficients and fit of transaction values on tax appraisal (WOZ) values at the property level
for Amsterdam 2005-2019. Standard errors in parenthesis.

Second, we observe a panel of housing values and characteristics for all prop-
erties in the Netherlands from 2006-2019. We observe annual tax appraisal values
(WOZ) and geo-coordinates. These data are annually collected by the government
to assess every property WOZ value and tax accordingly. The WOZ value of a
property is constructed by comparing the value of nearby transacted properties in
the neighbourhood and physical housing characteristics like size, house type, and
construction year. We can compare WOZ appraisal values to the subset of proper-
ties that are transacted to see how well they track market values. Table A1 shows
WOZ values correlate almost one-to-one with transaction prices and exhibit a high
degree of predictive power. We take this as evidence that WOZ values are infor-
mative of market values. These data also contain information about the occupant’s
tenancy status: homeowner, private renter, or social housing renter. We use these
categories to classify households across different segments of the housing market.

A.2.3 Linking households to housing units

We merge the housing unit panel to the household location panel through the
property identifier. We can then see tenancy status and and number of occupants
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per unit. We keep housing units with less than six occupants—those below 99th
percentile of occupant distribution—to eliminate residential units not inhabited by
regular households, such as university student halls or nursing homes.

A.2.4 Rent imputation

Our microdata has information on physical characteristics and tax appraisal values
for the universe of housing units in the Netherlands. However, we only observe
rents for a subset of units. Because we need an annual panel of housing prices at
the neighborhood level, we impute rents using tax valuations.

Table A2: Imputation results.
In-sample fit

Hedonic Model Random Forest

Rental Prices Price/m2 Rental Prices Price/m2

β 1.000 1.005 1.060 1.061
(0.002) (0.008) (0.002) (0.003)

constant -0.795 -0.091 -73.653 -0.868
(9.364) (0.117) (3.356) (0.037)

R2 0.636 0.580 0.940 0.940
N 11408 11408 11408 11408

Out-of-sample fit
Hedonic Model Random Forest

Rental Prices Price/m2 Rental Prices Price/m2

β 1.004 0.957 1.058 1.070
(0.022) (0.241) (0.007) (0.007)

constant 5.118 0.764 -73.639 -0.965
(25.746) (0.347) (9.698) (0.107)

R2 0.622 0.554 0.943 0.945
N 1268 1268 1268 1268

Notes: Table shows regression coefficients and fit of imputed rental prices on observed rental prices at the property level.
We do so for a linear hedonic regression and a random forest, and for two different data samples, the training sample (left
panel) to assess in-sample fit, and the testing sample (right panel) to asses out-of-sample fit. Standard errors in parenthesis.

First, we link microdata from the universe of housing units to a national rent
survey which contains roughly 13,000 observations of units in the rental market
between 2006-2019. We use the matched subset in the rental survey with their
tax valuation information to predict rents for housing units that do not appear
in the survey but do appear in the property value data as renter-occupied. We
keep only properties that are rented in the private rental market and not in social
housing. We predict total rental prices and rental prices by square meter on the
properties that are classified as private rental units from the tax appraisal data.
We use two methods: linear regression and random forest. In both cases we use
tax-appraisal values, official categories for measures of quality, total floor area,
number of rooms, latitude and longitude coordinates, time fixed effects, and wijk-
code fixed effects. We train our algorithms in 90% of the sample and test out-of-
sample predictive power in 10% of the sample. For the hedonic linear regression,
the in-sample R2 for total rental prices is 0.637 while the out-of-sample R2 is 0.629.
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Similarly, the random forest delivers an in-sample R2 of 0.813 and out-of-sample R2

of 0.782. The random forest model has a substantially better performance in terms
of predictive power, both in-sample and out-of-sample. Table A2 shows that when
regressing imputed on observed rental prices, the random forest also outperforms
classic linear regression.

A.2.5 Decreasing hazard rate of moving

Figure A2: Probability of changing residence, conditional on past location tenure.

Notes: Figure shows probability of moving out of the current location conditional on the number of years lived in the
location. We take averages across individuals who are not social housing residents and across time. Moving probabilities
and tenure are constructed using location choice panel derived from the CBS cadaster, described in section A.2.1.

Figure A2 shows the hazard rate of moving is decreasing in a household’s tenure
at the prior residence. This behavior can be rationalized by the inclusion of neighborhood-
specific capital that accumulates over time and is lost upon moving.

A.2.6 Housing expenditure shares

With our rent imputation from section A.2.4 we can predict rental prices for all
residential units of the city. We compute the share of income spent on housing
for households in the private rental market by dividing the predicted rental price
by their after-tax income. For households in social housing, we use instead the
yearly maximum social housing rent. Finally, we estimate housing expenditures
shares by taking the median observation conditional on demographic type and
year. These housing expenditure shares map to the term 1 ´ ϕk in Section A.3.1.
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A.2.7 Constructing Airbnb supply and prices

A challenge with the web-scraped Inside Airbnb data is that some listings may
be inactive, thus overstating Airbnb supply. To address this we focus on listings
that are sufficiently “active”. Using calendar availability data, we say a listing
is “active” in month t if it has been reviewed by a guest or its calendar has been
updated by its host in month t. Moreover, we want to separately identify listings in
which the host lives in the unit and shares it with guests, from those in which there
is no sharing. The former does not reduce housing stock for locals, while the latter
does. We define a listing as “commercially operated” if it is an entire-home listing,
has received new reviews over the past year, and has “sufficient booking activity”
such that it is implausible a local is living in the unit permanently. A listing has
“sufficient booking activity” if it satisfies any of the following three conditions:

1. It has been booked over 60 nights in the past year: this is equivalent to over
10 new reviews given an average review rate of 67% (Fradkin, Grewal and
Holtz, 2018) and an average stay length of 3.9 nights (source: press.airbnb.com).

2. It shows intent to be booked for many nights over the upcoming year: the
listing is available for more than 90 nights over the upcoming year and the
“instant book” feature is turned on.

3. It has had frequent updates, reflecting intent to be booked even though it
may not have the “instant book” feature turned on: the listing has been ac-
tively available for more than 90 nights over the upcoming year and this has
happened at least twice within the past year.

A limitation of the data is webscrapes begin in 2015, so we impute listings pre-2015
using calendar and review data. We can only do this for listings that survived up
to 2015, therefore our measure of pre- 2015 listings is a conservative lower bound.

A.3 Theory

A.3.1 Derivations of amenity demand

This section derives the amenity demand equation from section 4.1. We model the
household decision of how much housing and amenities to consume conditional
on living in a specific location. We omit time subscripts unless necessary.

Allocating expenditure between housing and consumption amenities. First, con-
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ditional on living in location j, a type k household with Cobb-Douglas preferences
chooses how much of its wage wk to spend on housing Hj and on a bundle of
locally available consumption amenities Cj,

max
tHj,Cju

Ak
j H1´ϕk

j Cϕk

j s.t. rjHj + PCjCj = wk, (1)

where rj is the rental price, PCj is the price of the consumption bundle, ϕk is the
expenditure share parameter for consumption amenities, and Ak

j represents the
household’s valuation of the location’s non-market attributes (Ak

j could represent

public goods such as noise or pollution). The optimal choice of housing is H˚,k
j =

(1 ´ ϕk)wk

rj
. Therefore, the income left over for amenity consumption is ϕkwk.

Allocating expenditure across different consumption amenity sectors and vari-
eties. Consumption amenities are classified into sectors indexed s = 1, . . . , S (e.g.,
“restaurants” is a sector), and firms/varieties are indexed i within each sector (e.g.,
an Italian restaurant is a firm/variety). The amenity consumption problem is,

max
tqk

isjuis

Ck
j s.t.

ÿ

is

pisjqk
isj = ϕkwk, where Ck

j ”

S
ź

s=1


 ÿ

i=1,...,Nsj

qk
isj

σs´1
σs


σs

σs´1


αk
s

. (2)

Ck
j is the amenities bundle, qk

isj is the quantity demanded of variety i in sector-
location pair sj, Nsj is the number of firms/varieties in the sector-location, and
pisj is the price of variety i in sector-location sj. Note Ck

j aggregates consumption
amenities across sectors and varieties in a way that is specific to each type k: it im-
plies Cobb-Douglas preferences over amenity sectors (with weights αk

s , such that
ř

s αk
s = 1) and CES preferences over varieties within an amenity sector (with sub-

stitution elasticity σs ą 1).3 Taking first order conditions with respect to qk
isj, and

then combining the FOC for two varieties i and i1 in the same sector s we obtain,

qk
isj

qk
i1sj

=

(
pisj

pi1sj

)´σs

.

3Observe that expenditure shares in sector s are identical for households of type j across all
neighborhoods j. However, type-k households’ utility from consumption amenities differs due to
the love-of-variety effect that stems from CES preferences.
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Furthermore, total expenditure on sector s is αk
sϕkwk and equal to

ř

iPs pisjqk
isj. Us-

ing this in the equation above, we obtain type k demand for variety i in sj, i.e., the
amenity demand equation from section 4.1 of the main text,

qk
isj =

αk
sϕkwk

pisj

(
pisj

Psj

)1´σs

, with Psj ”

Nsj
ÿ

i=1

p1´σs
isj

 1
1´σs

,

A.3.2 Flow utility specification

This section derives the parametric form for flow utility used in estimation in sec-
tion 5.3.1 of the main text and its connection to the amenity demand parameters.

Indirect utility from housing and amenity demand problem. Given our assump-
tion that marginal costs are constant within a sector-location, the equilibrium of
the firm-pricing game is symmetric within a sector-location, thus pisj = psj @i P sj.
Hence, consumers buy an equal amount of amenities from every firm within the
same sector-location. Type k demand for the individual firm i is,

qk
isj = qk

sj =
αk

sϕkwk

psjNsj
@i P sj. (3)

To obtain the indirect utility of living in j, we use the equation above to get the
optimal amenity bundle C˚

j , which along with the optimal housing choice H˚
j , is

substituted in equation 1. To take the indirect utility specification to the data we
also reintroduce time subscripts, and impose a flexible form for Ak

jt,

Ak
jt

wk
t

rjt
1´ϕk

(
ź

s

[
N

1
σs´1
sjt /psjt

]αk
s
)ϕk

φk

loooooooooooooooooooooomoooooooooooooooooooooon

=H˚
j

1´ϕk
C˚

j
ϕk

, with Ak
jt ” Aj At

(
ź

s
Nγk

s
sjt

)
b

αk
b

jt τνk

t Ξk
jt, (4)

and where φk ” (1 ´ ϕk)1´ϕk
(ϕk)ϕk ś

s(α
k
s)

αk
s ϕk

is a type-k constant. We assume the
valuation of local non-market attributes Ak

jt is decomposed as follows: Aj is a fixed
location attribute that is unobservable to the econometrician, At are unobservable
shocks common to all locations in the city, Nγk

s
sjt is a utility spillover derived from the

nearby presence of amenities beyond the direct consumption itself (which could be
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dis-utility, such as noise from bars), τνk

t is utility from location capital with νk ą 0,
bjt are exogenous time-varying location characteristics that are observable (such as
the presence of public housing), and Ξk

jt are time-varying location attributes that
are unobservable. The purpose of 4, especially specifying Ak

jt, is to take the theoret-
ical choice problem to the data and be transparent about what the econometrician
does and does not observe. Taking logs of 4, and adding a type I EV error εijt,

µk
j + µk

t ´(1 ´ ϕk) log rjt +
ÿ

s

( αk
sϕk

σs ´ 1
+ γk

s
)

log Nsjt + αk
b log bjt + νk log τt + ξk

jt + εijt,

where µk
j ” log Ak

j + log φk, µk
t ” log Ak

t + log wk
t , and ξk

jt ” ´ϕk ř

s αk
s log psjt +

log Ξk
jt. Because the level of utility with type I EV errors is not identified, we nor-

malize the variance of the shock to π2

6 by dividing the equation above by σk
ε ,

δk
j + δk

t +δk
r log rjt +

ÿ

s
δk

s log Nsjt + δk
b log bjt + δk

τ log τt + ξk
jt + ϵijt, (5)

where the δ coefficients are the normalized parameters after dividing by σk
ε . Finally,

to get to the exact flow utility specification from section 5.3.1 of the main text, we
define the indirect utility as 5 net of the type I EV shock, we introduce the moving
cost, and rewrite

ř

s δk
s log Nsjt in its vector-notation analogue δk

a log ajt,4

uk
t (j, xit) ” δk

j + δk
t + δk

r log rjt + δk
a log ajt + δk

b log bjt + δk
τ log τt ´ MCk(j, jt´1) + ξk

jt.

Connection between flow utility parameters and amenity demand parameters.
Observe that the flow utility parameters in the last equation above are a function
of the parameters of the housing and amenity choice problem,

δk
s =

(
αk

sϕk

σs ´ 1
+ γk

s

)
/σk

ε and δk
r = ´(1 ´ ϕk)/σk

ε .

Note the preference parameter for the sector s amenity, δk
s , can be positive or neg-

ative. The first term, αk
s ϕk

σs´1 , is non-negative because the Cobb-Douglas preference
parameter for amenity sector s αk

s is non-negative (consuming the amenity cannot
decrease utility). The second term, γk

s , can be positive or negative because it mea-

4Where δk
a ” [δk

1, . . . , δk
S] and log ajt ” [log N1jt, . . . , log NSjt]

1.
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sures how the presence of amenity s impacts utility beyond direct consumption
through spillovers that can be positive or negative (for example, noise from bars).

A.4 Simulation details

A.4.1 Outline of the equilibrium solver algorithm

We use a nested fixed-point algorithm to solve our model equilibrium. In the inner
loop, we solve for the equilibrium vector of long- and short-term rental prices,
given a fixed matrix of amenities. In the outer loop, we then solve for equilibrium
amenities. The algorithm is as follows: fix parameters λ P (0, 1) and δr, δp ą 0. The
outer loop proceeds as follows for step t = 1, . . .

(Ot
1) Guess a(t). The inner loop proceeds as follows for step g = 1, . . .

(Ig
1) Guess r(g) and p(g)

(Ig
2) Compute excess demand for long- and short-term housing:

zL(r(g), p(g), a(t)) and zS(r(g), p(g), a(t))

(Ig
3) Update prices using excess demands,

r(g+1) = r(g) + δr ¨ zL(r(g), p(g), a(t))

p(g+1) = p(g) + δp ¨ zS(r(g), p(g), a(t))

(Ig
3) Compute d(g)

r,p = max
!

||r(g+1) ´ r(g)||8, ||p(g+1) ´ p(g)||8

)

Iterate until step G such that d(G)
r,p ă ϵr,p for a tolerance level ϵr,p ą 0. Denote,

r(et)
” r(G) and p(et)

” p(G)

(Ot
2) Compute amenities the implied by equilibrium prices from inner loop,

a(et)
js =

1
Fjsσs

(
K

ÿ

k=1

QD,L,k
j (r(et), a(t))αk

sαk
cwk +QT

j (p
(et), a(t))αT

s αT
c wT

)

(Ot
3) Update amenities, a(t+1) = (1 ´ λ)a(et) + λa(t)

(Ot
4) Compute d(t)a = ||a(t+1) ´ a(t)||8
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Iterate until step T such that d(T)a ă ϵa for a tolerance level ϵa ą 0.

Algorithm settings. We construct the amenity supply equation using the estimates
from section 5.2. We set the unobservable component of entry costs equal to the
residuals of equation 24. For housing demand, we take the estimates from section
5.3, fix the exogenous characteristics of demand at their 2017 level, set unobserv-
able demand shocks ξk

j equal to zero (their conditional mean), and sum across
groups k to compute aggregate demand for long-term housing. We calibrate the
differential costs of short- versus long-term rentals to match the number of STR
tourists in each location in 2017. Finally, we start our solver at the observed prices
and amenities in 2017. We define convergence when the infinite norm of the excess
demand function for the vector of prices and amenities (r, p, a) is less than 1E-10.

A.4.2 Local uniqueness of equilibrium

To evaluate the extent of multiplicity, we experiment by perturbing the initial val-
ues supplied to the equilibrium solver described in section A.4.1.

Figure A2: Equilibrium deviations under a range of perturbations.

Rental Prices STR prices Amenities

Notes: The horizontal axes indicate perturbations (ranging from 0% to 4%) of the equilibrium solver’s starting point. The
vertical axes indicate how the equilibrium that results from the perturbed starting point deviates from the baseline un-
perturbed equilibrium (in percentage points). Deviations are measured as the mean percentage point gap in equilibrium
outcomes across samples (where for each sample we take the median gap in rent, amenities, and STR prices). Values of
zero on the vertical axes indicate the perturbation of the starting point leads to the same initial equilibrium. Positive values
indicate convergence to a different equilibrium, with higher values indicating further distance from the initial equilibrium.

Note that given an amenities matrix a, the equilibrium rent vector r is unique.
Therefore, for our exercise it suffices to vary the initial values of a. For the pertur-
bation, we first fix the prices to those in the data, (r0, p0) = (rObserved, pObserved).
Next, we draw an initial amenities matrix a0 from a neighborhood around ob-
served amenities, aObserved, as follows: a0 = aObserved + aObserved ¨ ϵ, where we ran-
domly sample a matrix ϵ from a ring with inner radius ρ and outer radius ρ + 0.01,
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for ρ = 0, 0.01, . . . , 0.04. For each ring, we draw 10 different starting values. Figure
A2 shows that for any perturbation below ϵ = 0.04 we obtain the same equilib-
rium. We take this as evidence that at least locally, the equilibrium is unique.

A.5 Welfare accounting details

A.5.1 Consumer surplus of renters

Following Train (2009), we define consumer surplus as a function of EVk
j,τ when

evaluated at vector (r, a). The expected consumer surplus for a type-k resident is a
function of their marginal utility of income υk and their choice over locations j1:

E
[
CSk

j,τ(r, a)
]
=

1
υk

Ek
[

max
j1

(
Vk

j1,j,τ(r, a) + ϵj1
)]

=
1
υk

EVk
j,τ(r, a) + Ck,

for some constant Ck. Integrating over the stationary distribution of households
over locations, we obtain the following expression for consumer surplus:

CSk(r, a) ”
1
υk

ÿ

j,τ

EVk
j,τ(r, a)πk

j,τ(r, a) + Ck.

Following Section A.3.2, the expected value function for group k is,

EVk
j,τ(r, a) =

1
1 ´ β

1
σk log wk + f (r, a),

for some function f and wk is income of group k. Moreover, we can estimate σk =

´
1´ϕk

δk
r

where δk
r is the price coefficient and ϕk is the housing expenditure share of

group k. Hence, the marginal utility of income for group k can be estimated as:

υk = ´
1

1 ´ β

δk
r

1 ´ ϕk
1

wk . (6)

We treat Younger Families as renters, computing their surplus as specified above.

A.5.2 Consumer surplus of home-owners

Some of our household types (Older Families and Singles) are home-owners (i.e.,
owner-occupiers), whom we assume rent to themselves and receive back rental in-
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come. To compute how much rental income, we take a location’s average rental
income (based on rj, the long-term rental price per square meter, and sizej, the av-
erage size of a housing unit) and weight it by the type-k home-owner population,

īL,k(r, a) ”
ÿ

j

QD,L,k
j (r, a)

ř

j Q
D,L,k
j (r, a)

¨ rj ¨ sizej. (7)

Consumer surplus of home-owners is the sum of i) their consumer surplus as
renters, defined in section A.5.1, and ii) their rental income īL,k(r, a),

CSk(r, a) ”
1
υk

ÿ

j,τ

EVk
j,τ(r, a)πk

j,τ(r, a) + īL,k(r, a) + Ck.

A.5.3 Consumer surplus of tourists

Following Train (2009), the consumer surplus of tourists is given by:

1
υT log

(
ÿ

j

exp(uT
j (p, a)

)
+ CT,

where uT
j (p, a) = δS

j + δS + δS
p log pj + δS

a log aj + ξS
j , and υT =

ř

j PT
j (p, a) ¨

δS
p

pj
.

A.5.4 Absentee landlords.

The city-wide average surplus for absentee landlords is,

ÿ

j

HA
j

ř

HA
j

[
1
α

log
(

exp(αpj + κj) + exp(αrj)
)
+ CL

]
,

where the term in square brackets is the surplus of the average absentee landlord
in location j, weighted by the housing stock owned in each location. We do not
include the surplus of absentee landlords in the consumer surplus of residents.
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A.5.5 Changes in surplus across counterfactuals

Given two equilibria (r0, a0) and (r1, a1), the change in type k consumer surplus is,

∆E
[
CSk] = E

[
CSk(r1, a1)

]
´ E

[
CSk(r0, a0)

]
,

where CSk is defined as in the preceding sections for each household type.

A.5.6 Segregation measure

We use the entropy index (White, 1986) as our measure of segregation. First, we
define the entropy index for a single location. Let dk

j be type k share of location j
population—if the type k population in location j is Dk

j , then djk ” Dk
j /

ř

k Dk
j . For

location j, the entropy index is defined as υj ” ´
řK

k=1 dk
j log(dk

j ). Next, we define

υ as the entropy index for the whole city. To do so, we define: Dj ”
řK

k=1 Dk
j ,

Dk ”
řJ

j=1 Dk
j , and D ”

řJ
j=1

řK
k=1 Dk

j , as well as,

pυ ” ´

K
ÿ

k=1

Dk

D
log
(Dk

D

)
and υ ”

J
ÿ

j=1

υj
Dj

D
ùñ υ ”

pυ ´ υ

pυ
.

Note υ P [0, 1] and higher υ means more segregation: υ equals 0 if the share of each
type in each location is equal to its population share in the whole population, and
υ equals 1 if each location is occupied by exactly one type.

A.6 Estimation details

A.6.1 Classification by k-means clustering

First, given the high persistence in tenancy status, we classify households into
three groups based on their modal tenancy status: homeowners, private renters,
and renters in social housing. Second, we construct an invariant vector of demo-
graphics as follows. For time-varying data—age, disposable income (gross income
net of tax), disposable income per person, presence of children—we take averages
across years. We standardize all characteristics—skill, region of origin, age, dis-
posable income, disposable income per person, children—because k-means is not
invariant to scale and mechanically puts more weight on variables that have larger
absolute values. We assign the categorical variables weights of 1/

?
C ´ 1, where
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the number of categories is C, so that each dimension has a weight of 1.5 We finally
run k-means on the transformed vector of demographics.

To choose the number of groups, we use a cross-validation method using two
heuristics: the elbow method and the Calinski-Harabasz index. The optimal num-
ber of clusters as suggested by the elbow method is pinned down by the largest
change of slope in the sum of squared errors curve. The Calinski-Harabasz in-
dex suggests that the optimal number of clusters is achieved when the ratio of the
sum of between-clusters dispersion and of inter-cluster dispersion is maximized.
Figure A2 shows the results of these heuristics for the three tenancy groups. For
homeowners and private renters both methods suggest an optimal number of two
clusters. For social housing renters, the first method suggests two clusters and the
second method either two or six clusters. Putting both results together, we choose
two as the final number of groups for social housing renters.

Figure A2: Heuristics for k-means classification
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A.6.2 Discretization of a continuous state variable

We closely follow Rust (1987). To keep the number of states low, we discretize
location tenure in two buckets: τ̄ = 1 if τ ď 3 and τ̄ = 2 otherwise. We assume that
location tenure evolves using transition probabilities Pt(x1

t+1|jt, xt). In practice, we
assume Pt(τt = 1|jt, xt) = 1 if jt ‰ jt´1 and,

Pt(τt = 2|jt, xt) =

$

&

%

1 , if jt = jt´1 and τt´1 = 2

p , if jt = jt´1 and τt´1 = 1,

5That is, for skill, we retain two categories, one that belongs to low skill and one to medium
skill. We divide the standardize dummies by 1?

2
. Four country of origin, we set Dutch as the

baseline category and divide standardize dummies by 1?
3
.
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where p is estimated using a frequency-based estimator.

A.6.3 Constructing the Expected Value Function

The value function is defined as follows:

Vt(x, ϵ) = max
j

#

Ex1|j,x

[
ut(x1, x)

]
+ ϵj + βEt

[
Vt+1(x1, ϵ1)|j, x, ϵ

]+
.

Under the assumptions in Section 5.3.1, we define the ex-ante value function as,

Et
[
Vt+1(x1, ϵ1)|j, x, ϵ

]
=

ż

Vt+1(x1, ϵ1)dFt(x1, ωt+1, ϵ1
|j, x, ϵ) (8)

=

ż ( ż

Vt+1(x1, ϵ1)dF(ϵ1)
)

dFt(x1, ωt+1|j, x) (9)

=

ż

Vt+1(x1)dFt(x1, ωt+1|j, x) ” EVt(j, x). (10)

We next define the conditional value function:

vt(j, x) =
ÿ

x1

Pt(x1
|j, x)

(
ut(x1, x) + βV̄t(x1)

)
” ūt(j, x) + βEVt(j, x).

If idiosyncratic shocks are distributed i.i.d. Type I EV, then:

Pt(j|x) =
exp(vt(j, x))

ř

j1 exp(vt(j1, x))
, and Vt(x) = log

(
ÿ

j

exp vt(j, x)

)
+ γ, (11)

where γ is Euler’s constant. Combining the two previous equations,

Vt(x) = vt(j, x) ´ ln(Pt(j|x)) + γ. (12)

A key observation is that equation 12 holds for any state x, and any action j.

Toward a demand regression equation. Our demand regression equation’s start-
ing point follows Hotz and Miller (1993), by taking differences on equation 11:

ln
( Pt(j|xt)

Pt(j1|xt)

)
= vt(j, xt) ´ vt(j1, xt). (13)
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Substituting for the choice specific value function,

ln
( Pt(j|xt)

Pt(j1|xt)

)
= ūt(j, xt) ´ ūt(j1, xt) + β

(
EVt(j, xt) ´ EVt(j1, xt)

)
. (14)

Following Scott (2013) and Kalouptsidi, Scott and Souza-Rodrigues (2021), the re-
alized expected value Vt(x1) can be decomposed between its expectation at time
t and its expectational error, where uncertainty is on the aggregate state ωt+1:
Vt+1(x1) = V̄t(x1) + νt(x1). Plugging in everything in equation 14 and using 12
to replace the continuation values Vt+1 gives us,

ln
( Pt(j|xt)

Pt(j1|xt)

)
=

ÿ

x
P(x|j, xt)ut(x, xt) ´

ÿ

x1

P(x1
|j1, xt)ut(x1, xt)

+β

[
ÿ

x
P(x|j, xt)V̄t(x) ´

ÿ

x1

P(x1
|j1, xt)V̄t(x1)

]
=

ÿ

x
P(x|j, xt)ut(x, xt) ´

ÿ

x1

P(x1
|j1, xt)ut(x1, xt)

+β

[
ÿ

x
P(x|j, xt)

(
Vt+1(x) ´ νt+1(x)

)
´

ÿ

x1

P(x1
|j1, xt)

(
Vt+1(x1) ´ νt+1(x1)

)]
=

ÿ

x
P(x|j, xt)ut(x, xt) ´

ÿ

x1

P(x1
|j1, xt)ut(x1, xt)

´β

[
ÿ

x
P(x|j, xt)

(
vt+1( j̃, x) ´ ln Pt+1( j̃|x) ´ νt+1(x)

)
´

ÿ

x1

P(x1
|j1, xt)

(
vt+1( j̃, x1) ´ ln Pt+1( j̃|x1) ´ νt+1(x1)

)]
=

ÿ

x
P(x|j, xt)ut(x, xt) ´

ÿ

x1

P(x1
|j1, xt)ut(x1, xt)

´β

[
ÿ

x
P(x|j, xt)

(
vt+1( j̃, x) ´ ln Pt+1( j̃|x))

´
ÿ

x1

P(x1
|j1, xt)

(
vt+1( j̃, x1) ´ ln Pt+1( j̃|x1))

]
+ ṽj,j1,xt ,

where ṽj,j1,xt ” β
(

ř

x P(x|j, xt)νt+1(x)´
ř

x1 P(x1|j1, xt)νt+1(x1)
)

is a sum of expec-
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tational errors. Observe that if j̃ is a renewal action then:

vt+1( j̃, x) = ūt+1( j̃, x) + EVt( j̃, 1) = u j̃,x,t+1 + δτ ¨ 1 + MC( j̃, j) + EVt( j̃, 1)

for all x = (j, τ), regardless of τ, where we decompose the per-period utility func-
tion, ūt+1( j̃, x), into a location specific component, u j̃,xt+1

, a location-tenure compo-
nent δτ, and a moving cost component MC( j̃, j). Substituting and re-arranging,

ln
( Pt(j|xt)

Pt(j1|xt)

)
+ β

[
ÿ

x
P(x|j, xt) ln Pt+1( j̃|x) ´

ÿ

x1

P(x1
|j1, xt) ln Pt+1( j̃|x1)

]
= uj,xt ´ uj1,xt + δτ

(
ÿ

x
P(x|j, xt)τ(x) ´

ÿ

x1

P(x1
|j1, xt)τ(x1)

)
+ MC(j, jt´1) ´ MC(j1, jt´1) + β

(
MC( j̃, j) ´ MC( j̃, j1)

)
+ ṽj,j1,xt .

A.6.4 First-stage estimation of Conditional Choice Probabilities.

We follow a similar procedure as in Traiberman (2019) and Humlum (2021). We
depart from their approaches that use a linear probability model and use a multi-
nomial logit on individual decisions to predict choice probabilities for several rea-
sons. First, we can use individual variation. Second, our data reveal that the like-
lihood of not moving is approximately 85%, while the probability of moving to
any other location remains close to zero. This bimodal nature of empirical dis-
tribution of choice probabilities suggests that an exponential relationship should
be better suited to fit individual decisions compared to a linear model. Third, we
find that many predicted probabilities of the linear model lie below zero or above
one, a feature that requires an ad-hoc extra censoring step. For every individual
i, we observe her individual state at time t xit = (jt´1, τt´1), where jt´1 is the pre-
vious location, τt´1 and type k(i), as well as the moving decision variables for all
j: jit = 1td(i)t = ju. We define a base outcome 0, and estimate the following
multinomial logit model for each group k:

P(jit = j) =
exp(λk

j,t + αk
j,1τt´1 + αk

j,2τ2
t´1)

1 +
řJ

j1=1 exp(λk
j1,t + αk

j1,1τt´1 + αk
j1,2τ2

t´1

.

Monte Carlo simulations. Through a Monte Carlo exercise, we compare the bias
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Table A3: Parameters used in simulations
Variables Parameters

Name Distribution (i.i.d.) / Value Name Value
u N(0, 0.05) α - 0.05
v N(0, 0.05) β1, β2 0.1
ξ u + v γ0, γ1 -0.0025
bexo LogN(0.5, 0.1) γ2 -0.5
r 0.75 ¨ bexo + 0.25 ¨ v δ 0.1
aexo LogN(1.5, 0.5) Nhouseholds P [5 ¨ 105, 106]
a 0.75 ¨ aexo + 0.25 ¨ v J 24
dist(j, j1), j, j1 ‰ 0; ρd LogN(1, 0.5) S 2
λj N(0, 0.1) τ̄ 2
λt (Perfect foresight) N(0, 0.1) T 10
λt (Rational expectations) 0 tol in EV iteration 10´10

in second-stage estimates when first-stage probabilities are predicted with a multi-
nomial logit or with a standard frequency estimator. For our Monte Carlo exercise,
we define the period flow utility function as:

ut((d, τ), xt) = α log(rdt) +
ÿ

s
βs log Ndst + ξdt + ηt + λd + MC(d, jt´1) + δττ,

with table A3 showing the data generating process of each of the utility compo-
nents. We also assume that agents have rational expectations. We compute the EV
function for each time period as follows. Starting in the last period T, we assume
that the economy is in steady-state. We define EVT as:

EVT(jT, τT) = log

(
ÿ

d

exp
(

ÿ

x1

PT(x1
|d, xT)

[
uT(x1, xT) + βEVT(d, xT)

]))
(15)

For t = 1, . . . , T ´ 1, we compute EVt using backward substitution as follows:

EVt(jt, τt) = log
(

ÿ

d

exp
(ÿ

τ1

Pt+1(x1
|d, xt)

[
ut+1(d, xt) + βEVt+1(d, x1)

]))
(16)

Assuming a uniform initial distribution of individuals across states, we simu-
late each individual forward for 10 time periods. We simulate 10 different samples.
We take population sizes of 50 thousand—which roughly corresponds to the size
of our groups—and 1 million— which provides insights about convergence prop-
erties of large samples. We test two first-stage estimates of conditional choice prob-
abilities: (i) using a multi-nomial logit model and (ii)observed frequencies where
we replace zero shares with a small ϵ = 10´5.
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The results are presented in Table A4 and reveal that first-stage choice prob-
abilities using a multi-nomial logit model yield a strictly dominant finite sample
performance. The gap is most pronounced in small samples where the likelihood
of observing zero flows between states in the data is higher, where the frequency-
based estimator uses small but arbitrary values imputed by the researcher, which
can be far from the true transition probabilities. The multi-nomial logit approxi-
mates the true probabilities well, reducing finite-sample bias in the final estimation
stage. As we increase the sample size, the number of observed zero flows dimin-
ishes, and we observe convergence of both estimators to the performance of the
first-best estimator using the true transition probabilities.

Table A4: Monte Carlo simulations with location fixed effects only and an indicator for high location capital

Mean of the absolute value of bias
ξ Pop (in 103) Prob. α β1 β2 γ0 γ1 γ2 δ

zero 50 T 1.2E-15 1.9E-16 3.2E-16 1.3E-15 8.2E-19 1.3E-15 1.8E-15
L 2.3E-02 2.3E-03 4.5E-03 5.7E-02 1.4E-04 3.9E-02 1.0E-01
F 6.1E-01 1.7E-01 1.7E-01 1.3E+00 2.9E-03 7.8E-01 1.3E+00

1000 T 8.1E-16 2.5E-16 2.6E-16 1.2E-15 6.5E-19 9.4E-16 1.6E-15
L 5.6E-03 1.2E-03 8.0E-04 3.3E-02 2.8E-05 3.6E-02 1.0E-01
F 1.4E-02 3.9E-03 2.6E-03 1.3E-02 5.0E-05 1.4E-02 3.8E-02

exogenous 50 T 2.7E-02 3.8E-03 3.5E-03 7.2E-03 5.0E-06 1.4E-15 2.0E-15
L 2.7E-02 3.5E-03 5.7E-03 5.9E-02 2.2E-04 2.8E-02 1.0E-01
F 4.6E-01 2.2E-01 2.7E-01 7.7E-01 2.9E-03 5.2E-01 1.5E+00

1000 T 4.2E-02 1.5E-02 1.4E-02 7.9E-02 3.6E-04 1.3E-15 2.0E-15
L 4.4E-02 1.5E-02 1.4E-02 1.0E-01 3.7E-04 3.4E-02 1.0E-01
F 4.8E-02 1.6E-02 1.4E-02 9.7E-02 4.7E-04 1.3E-02 4.3E-02

endogenous 50 T 2.5E-02 9.9E-03 1.1E-02 9.1E-03 1.3E-05 1.2E-15 2.0E-15
L 2.8E-02 9.5E-03 1.0E-02 5.6E-02 1.6E-04 4.4E-02 1.0E-01
F 4.3E-01 2.5E-01 2.4E-01 7.9E-01 2.8E-03 6.5E-01 1.0E+00

1000 T 3.0E-02 6.8E-03 3.2E-03 1.1E-02 1.0E-05 1.1E-15 1.9E-15
L 2.8E-02 6.9E-03 3.0E-03 2.5E-02 5.5E-05 3.7E-02 1.0E-01
F 4.2E-02 8.3E-03 5.5E-03 2.8E-02 1.0E-04 9.2E-03 3.3E-02

Notes: Table presents averaged absolute distance between the estimated parameter and true parameter over 10 random
draws of datasets. T represents estimation using the true transition probabilities; L using predicted probabilities by a
multinomial logit model; and F using transition probabilities computed based on empirical shares.

A.7 Robustness exercises

A.7.1 Robustness of real estate supply elasticity

We test how different choices of supply elasticities and their implied congestion
parameter η affect our main takeaways. First, Table A5 shows that choosing a
supply elasticity equal to San Francisco, as estimated by Saiz (2010), delivers the
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best model fit in terms of matching the observed distribution of rental prices.

Table A5: Rent fit across a range of supply elasticities
Parameters Rent fit

City Supply Elasticity η R2 β

San Franciso 0.66 1.52 0.578 1.229

New York 0.75 1.33 0.571 1.229

Boston 0.86 1.16 0.566 1.229

Portland 1.04 0.93 0.557 1.231

Detroit 1.24 0.81 0.549 1.234

Washington DC 1.61 0.62 0.524 1.252

Durham-Raleigh-Chapel Hill 2.11 0.47 0.476 1.291

Atlanta 2.55 0.39 0.473 1.288

Notes: Table presents the R-square and slope of observed rents against our model equilibrium rents. Supply elasticities are
from Saiz (2010) and inverted to obtain our amenity congestion parameter η.

Figure A5: Robustness of heterogeneity and STR-entry counterfactuals to η.
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Second, Figure A5 shows the key takeaways from our main counterfactuals in
sections 6.1-6.2 are robust to different supply elasticities, ranging from our baseline
inelastic San Francisco case (η=1.52) to the highly elastic case of Atlanta (η=0.39).
Figure A5 confirms that for the full range of η, the qualitative insight that pref-
erence heterogeneity can lead to more sorting but lower inequality is robust. It
also confirms the qualitative insight that all households lose from STR entry due
to higher rent, but some are partially compensated by amenity changes depending
on how they value the amenities linked to tourism, is robust. In all cases, losses of
older families are amplified by endogenous amenities, while those of other groups
are compensated. Hence, the choice of η does not make a major difference for
the mechanisms in our model, which instead depend on the correlation between
preferences over amenities and amenity supply response across household types.

A.7.2 Robustness of amenity supply estimates to precinct-year fixed effects

We present estimation results for a version of equation 24 from the main text that
allows for precinct-year fixed effects:

log Nsjt = λj + λp(j)t ´ η log Njt + log
(

ÿ

k

βk
sXk

jt

)
+ ωsjt, (17)

where p(j) indicates the precinct where district j is located. Following the same
procedure as in Section 5.2, estimation results are presented in Table A6.

We can test if the difference between the coefficients in Table A6 above and III
in the main draft, respectively, are statistically indistinguishable. To do so, we can
simply check whether confidence intervals overlap. It is easy to check that for the
95% confidence intervals reported in the tables, we can only reject that one coeffi-
cient is statistically different across the two specifications, namely, the coefficient
for Tourists on Restaurants.6 Moreover, to formally test for the difference between
the two models, we conduct a joint multiple hypothesis test. The F statistic in that
case is given by 0.8197, which is below 1.331—the critical value of an F distribution
with 59 and 1319 degrees of freedom at the 5% level. Therefore, we conclude that
the two models are not statistically different.

6We reject all statistical differences at the 99% level. We fail to reject four equalities at the 90%
level.
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Table A6: Estimates of amenity supply parameters.
Touristic Amenities Restaurants Bars Food Stores Non-Food Stores Nurseries

Older Families 251.65 15.284 0.0 3.042 18.097 1268.765˚˚˚

[0.0,619.269] [0.0,46.657] [0.0,0.0] [0.0,27.438] [0.0,85.227] [497.721,2397.678]
Singles 619.613 62.969 0.0 160.705 13.632 6.78

[0.0,1989.024] [0.0,404.971] [0.0,0.0] [0.0,530.939] [0.0,198.9] [0.0,0.001]
Younger Families 0.0 5.07 22.95 96.491˚˚˚ 331.003˚˚˚ 1506.579˚˚˚

[0.0,0.0] [0.0,41.273] [0.0,68.748] [12.003,186.982] [161.975,560.076] [349.155,2863.146]
Students 1891.545˚˚ 713.637˚˚˚ 33.078 174.087 0.68 313.761

[179.018,3749.272] [354.964,1135.771] [0.0,164.968] [0.0,561.47] [0.0,0.001] [0.0,2317.864]
Immigrant Families 0.0 0.328 16.918 64.158 67.804 321.911

[0.0,0.0] [0.0,0.001] [0.0,61.799] [0.0,170.987] [0.0,249.827] [0.0,1431.537]
Dutch Low Income 19.156 1.032 0.302 15.877 0.0 0.001

[0.0,171.662] [0.0,16.112] [0.0,2.647] [0.0,86.375] [0.0,0.0] [0.0,0.007]
Tourists 1332.384˚˚˚ 656.306˚˚˚ 342.083˚˚˚ 240.882˚˚˚ 1151.567˚˚˚ 0.0

[963.408,1732.815] [522.936,817.854] [248.024,443.765][157.747,308.077][880.522,1457.284] [0.0,0.0]

Note: Table reports bootstrap results for coefficients βk
s from Equation 17 for seven population types and six types of services.

Parameters βk
s along with fixed effects λj and λp(j)t are estimated via GMM, where we restrict βk

s ě 0. The estimation
procedure is outlined in section 5.2 and follows a Bayesian-bootstrap with random Dirichlet weights across 100 draws. Top
rows indicate average estimates of the bootstrap samples. Results inside square brackets indicate 95% confidence intervals.
We omit estimates of the location and time fixed effects. ˚ p ă 0.10, ˚˚ p ă 0.05, ˚˚˚ p ă 0.01.

A.7.3 Comparison of static and dynamic model estimates

We show how our demand estimates change in the static version of our model:
we remove forward-looking behavior (by setting β = 0) and location capital, i,.e.,
the dynamic state-dependent component of moving costs. We keep the bilateral
moving costs since they are a static component of moving costs and are common
in static models of migration (Bryan and Morten, 2019).

Table A7: Preference parameter demand estimation results in the static model.
Older Families Singles Younger Families

Rent -17.207˚˚˚ (4.968) -11.268˚˚˚ (4.138) -14.575˚˚˚ (4.316)

Tourism Offices -2.863˚˚˚ (0.920) -1.656˚˚ (0.766) -0.261 (0.799)

Restaurants 2.530 (1.543) 2.990˚˚ (1.285) 1.838 (1.340)

Bars -0.956˚˚ (0.427) -0.671˚ (0.356) -0.513 (0.371)

Food Stores -1.437 (1.359) 0.114 (1.132) 1.120 (1.180)

Nonfood Stores -1.401 (1.584) -0.992 (1.320) -0.225 (1.376)

Nurseries 3.162˚˚˚ (0.728) 1.629˚˚˚ (0.607) 2.741˚˚˚ (0.633)
N 11132 11132 11132

Notes: Table shows results of preference parameters for a static location choice model for 22 districts for 2008-2019. We esti-
mate preference parameters separately for three groups via GMM. The dependent variable is differences in path likelihoods,
after normalizing with respect to the outside option. Each type has 46 possible states, and 22 possible choices over 11 years,
leading to 11,132 state-choice combinations. We omit exogenous controls moving costs for ease of exposition. Two-step
efficient GMM standard errors in parenthesis. ˚ p ă 0.10, ˚˚ p ă 0.05, ˚˚˚ p ă 0.01.

Table A7 shows the demand estimates in the static model. Table A8 compares
the static estimates to our baseline dynamic estimates by performing a t-test of
differences for the willingness to pay for amenities—the amenity preference pa-
rameters normalized by the rent coefficient. Most of the coefficients are signifi-
cantly different across specifications, and in several cases even change sign. We
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take these differences as evidence that failing to account for dynamic considera-
tions can severely bias preference coefficients, in line with the findings of similar
studies (Bayer, McMillan, Murphy and Timmins, 2016).

Table A8: Comparison of dynamic and static estimates.

Dynamic Static Difference

Group Amenity WTP sd WTP sd Mean sd t-test

Older Families Touristic Amenities -0.1212 0.0151 -0.1664 0.0396 0.0452 0.0170 2.6667
Restaurants 0.0265 0.0347 0.1470 0.0896 -0.1206 0.0389 -3.0967
Bars -0.0695 0.0091 -0.0556 0.0209 -0.0139 0.0099 -1.4065
Food Stores -0.1557 0.0303 -0.0835 0.0746 -0.0721 0.0336 -2.1484
Nonfood Stores 0.0392 0.0359 -0.0814 0.0980 0.1206 0.0409 2.9518
Nurseries 0.1498 0.0087 0.1838 0.0267 -0.0340 0.0102 -3.3151

Singles Touristic Amenities -0.2148 0.0708 -0.1470 0.0489 -0.0679 0.0699 -0.9702
Restaurants 0.3183 0.1751 0.2653 0.1313 0.0530 0.1733 0.3057
Bars -0.2285 0.0880 -0.0595 0.0268 -0.1690 0.0861 -1.9620
Food Stores -0.5266 0.2284 0.0101 0.1017 -0.5368 0.2242 -2.3936
Nonfood Stores 0.6637 0.3140 -0.0881 0.1256 0.7518 0.3080 2.4412
Nurseries 0.0190 0.0588 0.1446 0.0276 -0.1256 0.0578 -2.1748

Younger Families Touristic Amenities 0.1612 0.1676 -0.0179 0.0513 0.1791 0.1641 1.0909
Restaurants -0.1426 0.1947 0.1261 0.0907 -0.2687 0.1912 -1.4055
Bars -0.0529 0.0379 -0.0352 0.0216 -0.0177 0.0373 -0.4741
Food Stores -0.2748 0.1664 0.0769 0.0911 -0.3516 0.1637 -2.1478
Nonfood Stores 0.7044 0.3846 -0.0154 0.0952 0.7198 0.3763 1.9128
Nurseries 0.1252 0.0384 0.1881 0.0282 -0.0629 0.0380 -1.6557
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